Abstract:Hate detection has long been a challenging task for the NLP community. The task becomes complex in a code-mixed environment because the models must understand the context and the hate expressed through language alteration. Compared to the monolingual setup, we see very less work on code-mixed hate as large-scale annotated hate corpora are unavailable to make the study. To overcome this bottleneck, we propose using native language hate samples. We hypothesise that in the era of multilingual language models (MLMs), hate in code-mixed settings can be detected by majorly relying on the native language samples. Even though the NLP literature reports the effectiveness of MLMs on hate detection in many cross-lingual settings, their extensive evaluation in a code-mixed scenario is yet to be done. This paper attempts to fill this gap through rigorous empirical experiments. We considered the Hindi-English code-mixed setup as a case study as we have the linguistic expertise for the same. Some of the interesting observations we got are: (i) adding native hate samples in the code-mixed training set, even in small quantity, improved the performance of MLMs for code-mixed hate detection, (ii) MLMs trained with native samples alone observed to be detecting code-mixed hate to a large extent, (iii) The visualisation of attention scores revealed that, when native samples were included in training, MLMs could better focus on the hate emitting words in the code-mixed context, and (iv) finally, when hate is subjective or sarcastic, naively mixing native samples doesn't help much to detect code-mixed hate. We will release the data and code repository to reproduce the reported results.
Abstract:This paper describes the system architectures and the models submitted by our team "IISERBBrains" to SemEval 2022 Task 6 competition. We contested for all three sub-tasks floated for the English dataset. On the leader-board, wegot19th rank out of43 teams for sub-taskA, the 8th rank out of22 teams for sub-task B,and13th rank out of 16 teams for sub-taskC. Apart from the submitted results and models, we also report the other models and results that we obtained through our experiments after organizers published the gold labels of their evaluation data
Abstract:In this paper we demonstrate how code-switching patterns can be utilised to improve various downstream NLP applications. In particular, we encode different switching features to improve humour, sarcasm and hate speech detection tasks. We believe that this simple linguistic observation can also be potentially helpful in improving other similar NLP applications.
Abstract:In this paper, we present a set of computational methods to identify the likeliness of a word being borrowed, based on the signals from social media. In terms of Spearman correlation coefficient values, our methods perform more than two times better (nearly 0.62) in predicting the borrowing likeliness compared to the best performing baseline (nearly 0.26) reported in literature. Based on this likeliness estimate we asked annotators to re-annotate the language tags of foreign words in predominantly native contexts. In 88 percent of cases the annotators felt that the foreign language tag should be replaced by native language tag, thus indicating a huge scope for improvement of automatic language identification systems.
Abstract:Code-mixing or code-switching are the effortless phenomena of natural switching between two or more languages in a single conversation. Use of a foreign word in a language; however, does not necessarily mean that the speaker is code-switching because often languages borrow lexical items from other languages. If a word is borrowed, it becomes a part of the lexicon of a language; whereas, during code-switching, the speaker is aware that the conversation involves foreign words or phrases. Identifying whether a foreign word used by a bilingual speaker is due to borrowing or code-switching is a fundamental importance to theories of multilingualism, and an essential prerequisite towards the development of language and speech technologies for multilingual communities. In this paper, we present a series of novel computational methods to identify the borrowed likeliness of a word, based on the social media signals. We first propose context based clustering method to sample a set of candidate words from the social media data.Next, we propose three novel and similar metrics based on the usage of these words by the users in different tweets; these metrics were used to score and rank the candidate words indicating their borrowed likeliness. We compare these rankings with a ground truth ranking constructed through a human judgment experiment. The Spearman's rank correlation between the two rankings (nearly 0.62 for all the three metric variants) is more than double the value (0.26) of the most competitive existing baseline reported in the literature. Some other striking observations are, (i) the correlation is higher for the ground truth data elicited from the younger participants (age less than 30) than that from the older participants, and (ii )those participants who use mixed-language for tweeting the least, provide the best signals of borrowing.