Abstract:The segmentation of individual trees from forest point clouds is a crucial task for downstream analyses such as carbon sequestration estimation. Recently, deep-learning-based methods have been proposed which show the potential of learning to segment trees. Since these methods are trained in a supervised way, the question arises how general models can be obtained that are applicable across a wide range of settings. So far, training has been mainly conducted with data from one specific laser scanning type and for specific types of forests. In this work, we train one segmentation model under various conditions, using seven diverse datasets found in literature, to gain insights into the generalization capabilities under domain-shift. Our results suggest that a generalization from coniferous dominated sparse point clouds to deciduous dominated high-resolution point clouds is possible. Conversely, qualitative evidence suggests that generalization from high-resolution to low-resolution point clouds is challenging. This emphasizes the need for forest point clouds with diverse data characteristics for model development. To enrich the available data basis, labeled trees from two previous works were propagated to the complete forest point cloud and are made publicly available at https://doi.org/10.25625/QUTUWU.
Abstract:Understanding vibroacoustic wave propagation in mechanical structures like airplanes, cars and houses is crucial to ensure health and comfort of their users. To analyze such systems, designers and engineers primarily consider the dynamic response in the frequency domain, which is computed through expensive numerical simulations like the finite element method. In contrast, data-driven surrogate models offer the promise of speeding up these simulations, thereby facilitating tasks like design optimization, uncertainty quantification, and design space exploration. We present a structured benchmark for a representative vibroacoustic problem: Predicting the frequency response for vibrating plates with varying forms of beadings. The benchmark features a total of 12,000 plate geometries with an associated numerical solution and introduces evaluation metrics to quantify the prediction quality. To address the frequency response prediction task, we propose a novel frequency query operator model, which is trained to map plate geometries to frequency response functions. By integrating principles from operator learning and implicit models for shape encoding, our approach effectively addresses the prediction of resonance peaks of frequency responses. We evaluate the method on our vibrating-plates benchmark and find that it outperforms DeepONets, Fourier Neural Operators and more traditional neural network architectures. The code and dataset are available from https://eckerlab.org/code/delden2023_plate.
Abstract:Laser-scanned point clouds of forests make it possible to extract valuable information for forest management. To consider single trees, a forest point cloud needs to be segmented into individual tree point clouds. Existing segmentation methods are usually based on hand-crafted algorithms, such as identifying trunks and growing trees from them, and face difficulties in dense forests with overlapping tree crowns. In this study, we propose \mbox{TreeLearn}, a deep learning-based approach for semantic and instance segmentation of forest point clouds. Unlike previous methods, TreeLearn is trained on already segmented point clouds in a data-driven manner, making it less reliant on predefined features and algorithms. Additionally, we introduce a new manually segmented benchmark forest dataset containing 156 full trees, and 79 partial trees, that have been cleanly segmented by hand. This enables the evaluation of instance segmentation performance going beyond just evaluating the detection of individual trees. We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software. An evaluation on the benchmark dataset shows that TreeLearn performs equally well or better than the algorithm used to generate its training data. Furthermore, the method's performance can be vastly improved by fine-tuning on the cleanly labeled benchmark dataset. The TreeLearn code is availabe from https://github.com/ecker-lab/TreeLearn. The data as well as trained models can be found at https://doi.org/10.25625/VPMPID.