Abstract:We introduce Multi-SimLex, a large-scale lexical resource and evaluation benchmark covering datasets for 12 typologically diverse languages, including major languages (e.g., Mandarin Chinese, Spanish, Russian) as well as less-resourced ones (e.g., Welsh, Kiswahili). Each language dataset is annotated for the lexical relation of semantic similarity and contains 1,888 semantically aligned concept pairs, providing a representative coverage of word classes (nouns, verbs, adjectives, adverbs), frequency ranks, similarity intervals, lexical fields, and concreteness levels. Additionally, owing to the alignment of concepts across languages, we provide a suite of 66 cross-lingual semantic similarity datasets. Due to its extensive size and language coverage, Multi-SimLex provides entirely novel opportunities for experimental evaluation and analysis. On its monolingual and cross-lingual benchmarks, we evaluate and analyze a wide array of recent state-of-the-art monolingual and cross-lingual representation models, including static and contextualized word embeddings (such as fastText, M-BERT and XLM), externally informed lexical representations, as well as fully unsupervised and (weakly) supervised cross-lingual word embeddings. We also present a step-by-step dataset creation protocol for creating consistent, Multi-Simlex-style resources for additional languages. We make these contributions -- the public release of Multi-SimLex datasets, their creation protocol, strong baseline results, and in-depth analyses which can be be helpful in guiding future developments in multilingual lexical semantics and representation learning -- available via a website which will encourage community effort in further expansion of Multi-Simlex to many more languages. Such a large-scale semantic resource could inspire significant further advances in NLP across languages.
Abstract:We present Attract-Repel, an algorithm for improving the semantic quality of word vectors by injecting constraints extracted from lexical resources. Attract-Repel facilitates the use of constraints from mono- and cross-lingual resources, yielding semantically specialised cross-lingual vector spaces. Our evaluation shows that the method can make use of existing cross-lingual lexicons to construct high-quality vector spaces for a plethora of different languages, facilitating semantic transfer from high- to lower-resource ones. The effectiveness of our approach is demonstrated with state-of-the-art results on semantic similarity datasets in six languages. We next show that Attract-Repel-specialised vectors boost performance in the downstream task of dialogue state tracking (DST) across multiple languages. Finally, we show that cross-lingual vector spaces produced by our algorithm facilitate the training of multilingual DST models, which brings further performance improvements.
Abstract:A common evaluation practice in the vector space models (VSMs) literature is to measure the models' ability to predict human judgments about lexical semantic relations between word pairs. Most existing evaluation sets, however, consist of scores collected for English word pairs only, ignoring the potential impact of the judgment language in which word pairs are presented on the human scores. In this paper we translate two prominent evaluation sets, wordsim353 (association) and SimLex999 (similarity), from English to Italian, German and Russian and collect scores for each dataset from crowdworkers fluent in its language. Our analysis reveals that human judgments are strongly impacted by the judgment language. Moreover, we show that the predictions of monolingual VSMs do not necessarily best correlate with human judgments made with the language used for model training, suggesting that models and humans are affected differently by the language they use when making semantic judgments. Finally, we show that in a large number of setups, multilingual VSM combination results in improved correlations with human judgments, suggesting that multilingualism may partially compensate for the judgment language effect on human judgments.