Abstract:This paper presents a fast, principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN). We propose the application of linear statistical dimensionality reduction techniques on the semantic features produced by a DNN, in order to capture the low-dimensional subspace truly spanned by said features. We show that the "feature reconstruction error" (FRE), which is the $\ell_2$-norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is highly effective for OOD and anomaly detection. To generalize to intermediate features produced at any given layer, we extend the methodology by applying nonlinear kernel-based methods. Experiments using standard image datasets and DNN architectures demonstrate that our method meets or exceeds best-in-class quality performance, but at a fraction of the computational and memory cost required by the state of the art. It can be trained and run very efficiently, even on a traditional CPU.
Abstract:Data poisoning attacks compromise the integrity of machine-learning models by introducing malicious training samples to influence the results during test time. In this work, we investigate backdoor data poisoning attack on deep neural networks (DNNs) by inserting a backdoor pattern in the training images. The resulting attack will misclassify poisoned test samples while maintaining high accuracies for the clean test-set. We present two approaches for detection of such poisoned samples by quantifying the uncertainty estimates associated with the trained models. In the first approach, we model the outputs of the various layers (deep features) with parametric probability distributions learnt from the clean held-out dataset. At inference, the likelihoods of deep features w.r.t these distributions are calculated to derive uncertainty estimates. In the second approach, we use Bayesian deep neural networks trained with mean-field variational inference to estimate model uncertainty associated with the predictions. The uncertainty estimates from these methods are used to discriminate clean from the poisoned samples.