Abstract:AI deployed in the real-world should be capable of autonomously adapting to novelties encountered after deployment. Yet, in the field of continual learning, the reliance on novelty and labeling oracles is commonplace albeit unrealistic. This paper addresses a challenging and under-explored problem: a deployed AI agent that continuously encounters unlabeled data - which may include both unseen samples of known classes and samples from novel (unknown) classes - and must adapt to it continuously. To tackle this challenge, we propose our method COUQ "Continual Open-world Uncertainty Quantification", an iterative uncertainty estimation algorithm tailored for learning in generalized continual open-world multi-class settings. We rigorously apply and evaluate COUQ on key sub-tasks in the Continual Open-World: continual novelty detection, uncertainty guided active learning, and uncertainty guided pseudo-labeling for semi-supervised CL. We demonstrate the effectiveness of our method across multiple datasets, ablations, backbones and performance superior to state-of-the-art.
Abstract:Object recognition in humans depends primarily on shape cues. We have developed a new approach to measuring the shape recognition performance of a vision system based on nearest neighbor view matching within the system's embedding space. Our performance benchmark, ShapeY, allows for precise control of task difficulty, by enforcing that view matching span a specified degree of 3D viewpoint change and/or appearance change. As a first test case we measured the performance of ResNet50 pre-trained on ImageNet. Matching error rates were high. For example, a 27 degree change in object pitch led ResNet50 to match the incorrect object 45% of the time. Appearance changes were also highly disruptive. Examination of false matches indicates that ResNet50's embedding space is severely "tangled". These findings suggest ShapeY can be a useful tool for charting the progress of artificial vision systems towards human-level shape recognition capabilities.