Abstract:Always-on machine learning models require a very low memory and compute footprint. Their restricted parameter count limits the model's capacity to learn, and the effectiveness of the usual training algorithms to find the best parameters. Here we show that a small convolutional model can be better trained by first refactoring its computation into a larger redundant multi-branched architecture. Then, for inference, we algebraically re-parameterize the trained model into the single-branched form with fewer parameters for a lower memory footprint and compute cost. Using this technique, we show that our always-on wake-word detector model, RepCNN, provides a good trade-off between latency and accuracy during inference. RepCNN re-parameterized models are 43% more accurate than a uni-branch convolutional model while having the same runtime. RepCNN also meets the accuracy of complex architectures like BC-ResNet, while having 2x lesser peak memory usage and 10x faster runtime.
Abstract:We present an architecture for voice trigger detection for virtual assistants. The main idea in this work is to exploit information in words that immediately follow the trigger phrase. We first demonstrate that by including more audio context after a detected trigger phrase, we can indeed get a more accurate decision. However, waiting to listen to more audio each time incurs a latency increase. Progressive Voice Trigger Detection allows us to trade-off latency and accuracy by accepting clear trigger candidates quickly, but waiting for more context to decide whether to accept more marginal examples. Using a two-stage architecture, we show that by delaying the decision for just 3% of detected true triggers in the test set, we are able to obtain a relative improvement of 66% in false rejection rate, while incurring only a negligible increase in latency.
Abstract:We describe the design of a voice trigger detection system for smart speakers. In this study, we address two major challenges. The first is that the detectors are deployed in complex acoustic environments with external noise and loud playback by the device itself. Secondly, collecting training examples for a specific keyword or trigger phrase is challenging resulting in a scarcity of trigger phrase specific training data. We describe a two-stage cascaded architecture where a low-power detector is always running and listening for the trigger phrase. If a detection is made at this stage, the candidate audio segment is re-scored by larger, more complex models to verify that the segment contains the trigger phrase. In this study, we focus our attention on the architecture and design of these second-pass detectors. We start by training a general acoustic model that produces phonetic transcriptions given a large labelled training dataset. Next, we collect a much smaller dataset of examples that are challenging for the baseline system. We then use multi-task learning to train a model to simultaneously produce accurate phonetic transcriptions on the larger dataset \emph{and} discriminate between true and easily confusable examples using the smaller dataset. Our results demonstrate that the proposed model reduces errors by half compared to the baseline in a range of challenging test conditions \emph{without} requiring extra parameters.