Abstract:The related work section is an important component of a scientific paper, which highlights the contribution of the target paper in the context of the reference papers. Authors can save their time and effort by using the automatically generated related work section as a draft to complete the final related work. Most of the existing related work section generation methods rely on extracting off-the-shelf sentences to make a comparative discussion about the target work and the reference papers. However, such sentences need to be written in advance and are hard to obtain in practice. Hence, in this paper, we propose an abstractive target-aware related work generator (TAG), which can generate related work sections consisting of new sentences. Concretely, we first propose a target-aware graph encoder, which models the relationships between reference papers and the target paper with target-centered attention mechanisms. In the decoding process, we propose a hierarchical decoder that attends to the nodes of different levels in the graph with keyphrases as semantic indicators. Finally, to generate a more informative related work, we propose multi-level contrastive optimization objectives, which aim to maximize the mutual information between the generated related work with the references and minimize that with non-references. Extensive experiments on two public scholar datasets show that the proposed model brings substantial improvements over several strong baselines in terms of automatic and tailored human evaluations.
Abstract:This paper provides an overview of the Arabic Sentiment Analysis Challenge organized by King Abdullah University of Science and Technology (KAUST). The task in this challenge is to develop machine learning models to classify a given tweet into one of the three categories Positive, Negative, or Neutral. From our recently released ASAD dataset, we provide the competitors with 55K tweets for training, and 20K tweets for validation, based on which the performance of participating teams are ranked on a leaderboard, https://www.kaggle.com/c/arabic-sentiment-analysis-2021-kaust. The competition received in total 1247 submissions from 74 teams (99 team members). The final winners are determined by another private set of 20K tweets that have the same distribution as the training and validation set. In this paper, we present the main findings in the competition and summarize the methods and tools used by the top ranked teams. The full dataset of 100K labeled tweets is also released for public usage, at https://www.kaggle.com/c/arabic-sentiment-analysis-2021-kaust/data.
Abstract:This paper provides a detailed description of a new Twitter-based benchmark dataset for Arabic Sentiment Analysis (ASAD), which is launched in a competition3, sponsored by KAUST for awarding 10000 USD, 5000 USD and 2000 USD to the first, second and third place winners, respectively. Compared to other publicly released Arabic datasets, ASAD is a large, high-quality annotated dataset(including 95K tweets), with three-class sentiment labels (positive, negative and neutral). We presents the details of the data collection process and annotation process. In addition, we implement several baseline models for the competition task and report the results as a reference for the participants to the competition.
Abstract:Since the first alert launched by the World Health Organization (5 January, 2020), COVID-19 has been spreading out to over 180 countries and territories. As of June 18, 2020, in total, there are now over 8,400,000 cases and over 450,000 related deaths. This causes massive losses in the economy and jobs globally and confining about 58% of the global population. In this paper, we introduce SenWave, a novel sentimental analysis work using 105+ million collected tweets and Weibo messages to evaluate the global rise and falls of sentiments during the COVID-19 pandemic. To make a fine-grained analysis on the feeling when we face this global health crisis, we annotate 10K tweets in English and 10K tweets in Arabic in 10 categories, including optimistic, thankful, empathetic, pessimistic, anxious, sad, annoyed, denial, official report, and joking. We then utilize an integrated transformer framework, called simpletransformer, to conduct multi-label sentimental classification by fine-tuning the pre-trained language model on the labeled data. Meanwhile, in order for a more complete analysis, we also translate the annotated English tweets into different languages (Spanish, Italian, and French) to generated training data for building sentiment analysis models for these languages. SenWave thus reveals the sentiment of global conversation in six different languages on COVID-19 (covering English, Spanish, French, Italian, Arabic and Chinese), followed the spread of the epidemic. The conversation showed a remarkably similar pattern of rapid rise and slow decline over time across all nations, as well as on special topics like the herd immunity strategies, to which the global conversation reacts strongly negatively. Overall, SenWave shows that optimistic and positive sentiments increased over time, foretelling a desire to seek, together, a reset for an improved COVID-19 world.