Scool, CRIStAL
Abstract:Deep reinforcement learning agents are prone to goal misalignments. The black-box nature of their policies hinders the detection and correction of such misalignments, and the trust necessary for real-world deployment. So far, solutions learning interpretable policies are inefficient or require many human priors. We propose INTERPRETER, a fast distillation method producing INTerpretable Editable tRee Programs for ReinforcEmenT lEaRning. We empirically demonstrate that INTERPRETER compact tree programs match oracles across a diverse set of sequential decision tasks and evaluate the impact of our design choices on interpretability and performances. We show that our policies can be interpreted and edited to correct misalignments on Atari games and to explain real farming strategies.
Abstract:Underwater Unmanned Vehicles (UUVs) have to constantly compensate for the external disturbing forces acting on their body. Adaptive Control theory is commonly used there to grant the control law some flexibility in its response to process variation. Today, learning-based (LB) adaptive methods are leading the field where model-based control structures are combined with deep model-free learning algorithms. This work proposes experiments and metrics to empirically study the stability of such a controller. We perform this stability analysis on a LB adaptive control system whose adaptive parameters are determined using a Cross-Entropy Deep Learning method.
Abstract:Embracing the pursuit of intrinsically explainable reinforcement learning raises crucial questions: what distinguishes explainability from interpretability? Should explainable and interpretable agents be developed outside of domains where transparency is imperative? What advantages do interpretable policies offer over neural networks? How can we rigorously define and measure interpretability in policies, without user studies? What reinforcement learning paradigms,are the most suited to develop interpretable agents? Can Markov Decision Processes integrate interpretable state representations? In addition to motivate an Interpretable RL community centered around the aforementioned questions, we propose the first venue dedicated to Interpretable RL: the InterpPol Workshop.
Abstract:Decision trees are known to be intrinsically interpretable as they can be inspected and interpreted by humans. Furthermore, recent hardware advances have rekindled an interest for optimal decision tree algorithms, that produce more accurate trees than the usual greedy approaches. However, these optimal algorithms return a single tree optimizing a hand defined interpretability-performance trade-off, obtained by specifying a maximum number of decision nodes, giving no further insights about the quality of this trade-off. In this paper, we propose a new Markov Decision Problem (MDP) formulation for finding optimal decision trees. The main interest of this formulation is that we can compute the optimal decision trees for several interpretability-performance trade-offs by solving a single dynamic program, letting the user choose a posteriori the tree that best suits their needs. Empirically, we show that our method is competitive with state-of-the-art algorithms in terms of accuracy and runtime while returning a whole set of trees on the interpretability-performance Pareto front.
Abstract:The reproducibility of many experimental results in Deep Reinforcement Learning (RL) is under question. To solve this reproducibility crisis, we propose a theoretically sound methodology to compare multiple Deep RL algorithms. The performance of one execution of a Deep RL algorithm is random so that independent executions are needed to assess it precisely. When comparing several RL algorithms, a major question is how many executions must be made and how can we assure that the results of such a comparison is theoretically sound. Researchers in Deep RL often use less than 5 independent executions to compare algorithms: we claim that this is not enough in general. Moreover, when comparing several algorithms at once, the error of each comparison accumulates and must be taken into account with a multiple tests procedure to preserve low error guarantees. To address this problem in a statistically sound way, we introduce AdaStop, a new statistical test based on multiple group sequential tests. When comparing algorithms, AdaStop adapts the number of executions to stop as early as possible while ensuring that we have enough information to distinguish algorithms that perform better than the others in a statistical significant way. We prove both theoretically and empirically that AdaStop has a low probability of making an error (Family-Wise Error). Finally, we illustrate the effectiveness of AdaStop in multiple use-cases, including toy examples and difficult cases such as Mujoco environments.
Abstract:Interpretability of AI models allows for user safety checks to build trust in these models. In particular, decision trees (DTs) provide a global view on the learned model and clearly outlines the role of the features that are critical to classify a given data. However, interpretability is hindered if the DT is too large. To learn compact trees, a Reinforcement Learning (RL) framework has been recently proposed to explore the space of DTs. A given supervised classification task is modeled as a Markov decision problem (MDP) and then augmented with additional actions that gather information about the features, equivalent to building a DT. By appropriately penalizing these actions, the RL agent learns to optimally trade-off size and performance of a DT. However, to do so, this RL agent has to solve a partially observable MDP. The main contribution of this paper is to prove that it is sufficient to solve a fully observable problem to learn a DT optimizing the interpretability-performance trade-off. As such any planning or RL algorithm can be used. We demonstrate the effectiveness of this approach on a set of classical supervised classification datasets and compare our approach with other interpretability-performance optimizing methods.