Abstract:The rise of Large Language Models (LLMs) has raised questions about their ability to understand climate-related contexts. Though climate change dominates social media, analyzing its multimodal expressions is understudied, and current tools have failed to determine whether LLMs amplify credible solutions or spread unsubstantiated claims. To address this, we introduce CliME (Climate Change Multimodal Evaluation), a first-of-its-kind multimodal dataset, comprising 2579 Twitter and Reddit posts. The benchmark features a diverse collection of humorous memes and skeptical posts, capturing how these formats distill complex issues into viral narratives that shape public opinion and policy discussions. To systematically evaluate LLM performance, we present the Climate Alignment Quotient (CAQ), a novel metric comprising five distinct dimensions: Articulation, Evidence, Resonance, Transition, and Specificity. Additionally, we propose three analytical lenses: Actionability, Criticality, and Justice, to guide the assessment of LLM-generated climate discourse using CAQ. Our findings, based on the CAQ metric, indicate that while most evaluated LLMs perform relatively well in Criticality and Justice, they consistently underperform on the Actionability axis. Among the models evaluated, Claude 3.7 Sonnet achieves the highest overall performance. We publicly release our CliME dataset and code to foster further research in this domain.
Abstract:The proliferation of AI techniques for image generation, coupled with their increasing accessibility, has raised significant concerns about the potential misuse of these images to spread misinformation. Recent AI-generated image detection (AGID) methods include CNNDetection, NPR, DM Image Detection, Fake Image Detection, DIRE, LASTED, GAN Image Detection, AIDE, SSP, DRCT, RINE, OCC-CLIP, De-Fake, and Deep Fake Detection. However, we argue that the current state-of-the-art AGID techniques are inadequate for effectively detecting contemporary AI-generated images and advocate for a comprehensive reevaluation of these methods. We introduce the Visual Counter Turing Test (VCT^2), a benchmark comprising ~130K images generated by contemporary text-to-image models (Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and Midjourney 6). VCT^2 includes two sets of prompts sourced from tweets by the New York Times Twitter account and captions from the MS COCO dataset. We also evaluate the performance of the aforementioned AGID techniques on the VCT$^2$ benchmark, highlighting their ineffectiveness in detecting AI-generated images. As image-generative AI models continue to evolve, the need for a quantifiable framework to evaluate these models becomes increasingly critical. To meet this need, we propose the Visual AI Index (V_AI), which assesses generated images from various visual perspectives, including texture complexity and object coherence, setting a new standard for evaluating image-generative AI models. To foster research in this domain, we make our https://huggingface.co/datasets/anonymous1233/COCO_AI and https://huggingface.co/datasets/anonymous1233/twitter_AI datasets publicly available.
Abstract:Localizing unusual activities, such as human errors or surveillance incidents, in videos holds practical significance. However, current video understanding models struggle with localizing these unusual events likely because of their insufficient representation in models' pretraining datasets. To explore foundation models' capability in localizing unusual activity, we introduce UAL-Bench, a comprehensive benchmark for unusual activity localization, featuring three video datasets: UAG-OOPS, UAG-SSBD, UAG-FunQA, and an instruction-tune dataset: OOPS-UAG-Instruct, to improve model capabilities. UAL-Bench evaluates three approaches: Video-Language Models (Vid-LLMs), instruction-tuned Vid-LLMs, and a novel integration of Vision-Language Models and Large Language Models (VLM-LLM). Our results show the VLM-LLM approach excels in localizing short-span unusual events and predicting their onset (start time) more accurately than Vid-LLMs. We also propose a new metric, R@1, TD <= p, to address limitations in existing evaluation methods. Our findings highlight the challenges posed by long-duration videos, particularly in autism diagnosis scenarios, and the need for further advancements in localization techniques. Our work not only provides a benchmark for unusual activity localization but also outlines the key challenges for existing foundation models, suggesting future research directions on this important task.