Abstract:Large Language Models (LLMs) have become integral to daily life, especially advancing as intelligent assistants through on-device deployment on smartphones. However, existing LLM evaluation benchmarks predominantly focus on objective tasks like mathematics and coding in English, which do not necessarily reflect the practical use cases of on-device LLMs in real-world mobile scenarios, especially for Chinese users. To address these gaps, we introduce SmartBench, the first benchmark designed to evaluate the capabilities of on-device LLMs in Chinese mobile contexts. We analyze functionalities provided by representative smartphone manufacturers and divide them into five categories: text summarization, text Q\&A, information extraction, content creation, and notification management, further detailed into 20 specific tasks. For each task, we construct high-quality datasets comprising 50 to 200 question-answer pairs that reflect everyday mobile interactions, and we develop automated evaluation criteria tailored for these tasks. We conduct comprehensive evaluations of on-device LLMs and MLLMs using SmartBench and also assess their performance after quantized deployment on real smartphone NPUs. Our contributions provide a standardized framework for evaluating on-device LLMs in Chinese, promoting further development and optimization in this critical area. Code and data will be available at https://github.com/Lucky-Lance/SmartBench.
Abstract:Recent advancements in Multimodal Large Language Models (MLLMs) have enabled their deployment on mobile devices. However, challenges persist in maintaining strong language capabilities and ensuring hardware compatibility, both of which are crucial for user experience and practical deployment efficiency. In our deployment process, we observe that existing MLLMs often face performance degradation on pure language tasks, and the current NPU platforms on smartphones do not support the MoE architecture, which is commonly used to preserve pure language capabilities during multimodal training. To address these issues, we systematically analyze methods to maintain pure language capabilities during the training of MLLMs, focusing on both training data and model architecture aspects. Based on these analyses, we propose GenieBlue, an efficient MLLM structural design that integrates both linguistic and multimodal capabilities for LLMs on mobile devices. GenieBlue freezes the original LLM parameters during MLLM training to maintain pure language capabilities. It acquires multimodal capabilities by duplicating specific transformer blocks for full fine-tuning and integrating lightweight LoRA modules. This approach preserves language capabilities while achieving comparable multimodal performance through extensive training. Deployed on smartphone NPUs, GenieBlue demonstrates efficiency and practicality for applications on mobile devices.