Abstract:With the rapid development of cloud computing, virtual machine scheduling has become one of the most important but challenging issues for the cloud computing community, especially for practical heterogeneous request sequences. By analyzing the impact of request heterogeneity on some popular heuristic schedulers, it can be found that existing scheduling algorithms can not handle the request heterogeneity properly and efficiently. In this paper, a plug-and-play virtual machine scheduling intensifier, called Resource Assigner (ReAssigner), is proposed to enhance the scheduling efficiency of any given scheduler for heterogeneous requests. The key idea of ReAssigner is to pre-assign roles to physical resources and let resources of the same role form a virtual cluster to handle homogeneous requests. ReAssigner can cooperate with arbitrary schedulers by restricting their scheduling space to virtual clusters. With evaluations on the real dataset from Huawei Cloud, the proposed ReAssigner achieves significant scheduling performance improvement compared with some state-of-the-art scheduling methods.
Abstract:A novel simulator called VMAgent is introduced to help RL researchers better explore new methods, especially for virtual machine scheduling. VMAgent is inspired by practical virtual machine (VM) scheduling tasks and provides an efficient simulation platform that can reflect the real situations of cloud computing. Three scenarios (fading, recovering, and expansion) are concluded from practical cloud computing and corresponds to many reinforcement learning challenges (high dimensional state and action spaces, high non-stationarity, and life-long demand). VMAgent provides flexible configurations for RL researchers to design their customized scheduling environments considering different problem features. From the VM scheduling perspective, VMAgent also helps to explore better learning-based scheduling solutions.