Abstract:LLMs have long demonstrated remarkable effectiveness in automatic program repair (APR), with OpenAI's ChatGPT being one of the most widely used models in this domain. Through continuous iterations and upgrades of GPT-family models, their performance in fixing bugs has already reached state-of-the-art levels. However, there are few works comparing the effectiveness and variations of different versions of GPT-family models on APR. In this work, inspired by the recent public release of the GPT-o1 models, we conduct the first study to compare the effectiveness of different versions of the GPT-family models in APR. We evaluate the performance of the latest version of the GPT-family models (i.e., O1-preview and O1-mini), GPT-4o, and the historical version of ChatGPT on APR. We conduct an empirical study of the four GPT-family models against other LLMs and APR techniques on the QuixBugs benchmark from multiple evaluation perspectives, including repair success rate, repair cost, response length, and behavior patterns. The results demonstrate that O1's repair capability exceeds that of prior GPT-family models, successfully fixing all 40 bugs in the benchmark. Our work can serve as a foundation for further in-depth exploration of the applications of GPT-family models in APR.
Abstract:Retrieval-Augmented Generation (RAG) has become a primary technique for mitigating hallucinations in large language models (LLMs). However, incomplete knowledge extraction and insufficient understanding can still mislead LLMs to produce irrelevant or even contradictory responses, which means hallucinations persist in RAG. In this paper, we propose LRP4RAG, a method based on the Layer-wise Relevance Propagation (LRP) algorithm for detecting hallucinations in RAG. Specifically, we first utilize LRP to compute the relevance between the input and output of the RAG generator. We then apply further extraction and resampling to the relevance matrix. The processed relevance data are input into multiple classifiers to determine whether the output contains hallucinations. To the best of our knowledge, this is the first time that LRP has been used for detecting RAG hallucinations, and extensive experiments demonstrate that LRP4RAG outperforms existing baselines.
Abstract:Machine translation systems have been widely adopted in our daily life, making life easier and more convenient. Unfortunately, erroneous translations may result in severe consequences, such as financial losses. This requires to improve the accuracy and the reliability of machine translation systems. However, it is challenging to test machine translation systems because of the complexity and intractability of the underlying neural models. To tackle these challenges, we propose a novel metamorphic testing approach by syntactic tree pruning (STP) to validate machine translation systems. Our key insight is that a pruned sentence should have similar crucial semantics compared with the original sentence. Specifically, STP (1) proposes a core semantics-preserving pruning strategy by basic sentence structure and dependency relations on the level of syntactic tree representation; (2) generates source sentence pairs based on the metamorphic relation; (3) reports suspicious issues whose translations break the consistency property by a bag-of-words model. We further evaluate STP on two state-of-the-art machine translation systems (i.e., Google Translate and Bing Microsoft Translator) with 1,200 source sentences as inputs. The results show that STP can accurately find 5,073 unique erroneous translations in Google Translate and 5,100 unique erroneous translations in Bing Microsoft Translator (400% more than state-of-the-art techniques), with 64.5% and 65.4% precision, respectively. The reported erroneous translations vary in types and more than 90% of them cannot be found by state-of-the-art techniques. There are 9,393 erroneous translations unique to STP, which is 711.9% more than state-of-the-art techniques. Moreover, STP is quite effective to detect translation errors for the original sentences with a recall reaching 74.0%, improving state-of-the-art techniques by 55.1% on average.