Abstract:Noise in data appears to be inevitable in most real-world machine learning applications and would cause severe overfitting problems. Not only can data features contain noise, but labels are also prone to be noisy due to human input. In this paper, rather than noisy label learning in multiclass classifications, we instead focus on the less explored area of noisy label learning for multilabel classifications. Specifically, we investigate the post-correction of predictions generated from classifiers learned with noisy labels. The reasons are two-fold. Firstly, this approach can directly work with the trained models to save computational resources. Secondly, it could be applied on top of other noisy label correction techniques to achieve further improvements. To handle this problem, we appeal to deep generative approaches that are possible for uncertainty estimation. Our model posits that label noise arises from a stochastic shift in the latent variable, providing a more robust and beneficial means for noisy learning. We develop both unsupervised and semi-supervised learning methods for our model. The extensive empirical study presents solid evidence to that our approach is able to consistently improve the independent models and performs better than a number of existing methods across various noisy label settings. Moreover, a comprehensive empirical analysis of the proposed method is carried out to validate its robustness, including sensitivity analysis and an ablation study, among other elements.
Abstract:This paper revisits an incredibly simple yet exceedingly effective computing paradigm, Deep Mutual Learning (DML). We observe that the effectiveness correlates highly to its excellent generalization quality. In the paper, we interpret the performance improvement with DML from a novel perspective that it is roughly an approximate Bayesian posterior sampling procedure. This also establishes the foundation for applying the R\'{e}nyi divergence to improve the original DML, as it brings in the variance control of the prior (in the context of DML). Therefore, we propose R\'{e}nyi Divergence Deep Mutual Learning (RDML). Our empirical results represent the advantage of the marriage of DML and the R\'{e}nyi divergence. The flexible control imposed by the R\'{e}nyi divergence is able to further improve DML to learn better generalized models.
Abstract:Hierarchical clustering has been shown to be valuable in many scenarios, e.g. catalogues, biology research, image processing, and so on. Despite its usefulness to many situations, there is no agreed methodology on how to properly evaluate the hierarchies produced from different techniques, particularly in the case where ground-truth labels are unavailable. This motivates us to propose a framework for assessing the quality of hierarchical clustering allocations which covers the case of no ground-truth information. Such a quality measurement is useful, for example, to assess the hierarchical structures used by online retailer websites to display their product catalogues. Differently to all the previous measures and metrics, our framework tackles the evaluation from a decision theoretic perspective. We model the process as a bot searching stochastically for items in the hierarchy and establish a measure representing the degree to which the hierarchy supports this search. We employ the concept of Partially Observable Markov Decision Processes (POMDP) to model the uncertainty, the decision making, and the cognitive return for searchers in such a scenario. In this paper, we fully discuss the modeling details and demonstrate its application on some datasets.
Abstract:This paper focuses on the problem of hierarchical non-overlapping clustering of a dataset. In such a clustering, each data item is associated with exactly one leaf node and each internal node is associated with all the data items stored in the sub-tree beneath it, so that each level of the hierarchy corresponds to a partition of the dataset. We develop a novel Bayesian nonparametric method combining the nested Chinese Restaurant Process (nCRP) and the Hierarchical Dirichlet Process (HDP). Compared with other existing Bayesian approaches, our solution tackles data with complex latent mixture features which has not been previously explored in the literature. We discuss the details of the model and the inference procedure. Furthermore, experiments on three datasets show that our method achieves solid empirical results in comparison with existing algorithms.