Abstract:Simile interpretation (SI) and simile generation (SG) are challenging tasks for NLP because models require adequate world knowledge to produce predictions. Previous works have employed many hand-crafted resources to bring knowledge-related into models, which is time-consuming and labor-intensive. In recent years, pre-trained language models (PLMs) based approaches have become the de-facto standard in NLP since they learn generic knowledge from a large corpus. The knowledge embedded in PLMs may be useful for SI and SG tasks. Nevertheless, there are few works to explore it. In this paper, we probe simile knowledge from PLMs to solve the SI and SG tasks in the unified framework of simile triple completion for the first time. The backbone of our framework is to construct masked sentences with manual patterns and then predict the candidate words in the masked position. In this framework, we adopt a secondary training process (Adjective-Noun mask Training) with the masked language model (MLM) loss to enhance the prediction diversity of candidate words in the masked position. Moreover, pattern ensemble (PE) and pattern search (PS) are applied to improve the quality of predicted words. Finally, automatic and human evaluations demonstrate the effectiveness of our framework in both SI and SG tasks.
Abstract:Existing task-oriented chatbots heavily rely on spoken language understanding (SLU) systems to determine a user's utterance's intent and other key information for fulfilling specific tasks. In real-life applications, it is crucial to occasionally induce novel dialog intents from the conversation logs to improve the user experience. In this paper, we propose the Density-based Deep Clustering Ensemble (DDCE) method for dialog intent induction. Compared to existing K-means based methods, our proposed method is more effective in dealing with real-life scenarios where a large number of outliers exist. To maximize data utilization, we jointly optimize texts' representations and the hyperparameters of the clustering algorithm. In addition, we design an outlier-aware clustering ensemble framework to handle the overfitting issue. Experimental results over seven datasets show that our proposed method significantly outperforms other state-of-the-art baselines.