Abstract:Segmentation of retinal vessel images is critical to the diagnosis of retinopathy. Recently, convolutional neural networks have shown significant ability to extract the blood vessel structure. However, it remains challenging to refined segmentation for the capillaries and the edges of retinal vessels due to thickness inconsistencies and blurry boundaries. In this paper, we propose a novel deep neural network for retinal vessel segmentation based on shared decoder and pyramid-like loss (SPNet) to address the above problems. Specifically, we introduce a decoder-sharing mechanism to capture multi-scale semantic information, where feature maps at diverse scales are decoded through a sequence of weight-sharing decoder modules. Also, to strengthen characterization on the capillaries and the edges of blood vessels, we define a residual pyramid architecture which decomposes the spatial information in the decoding phase. A pyramid-like loss function is designed to compensate possible segmentation errors progressively. Experimental results on public benchmarks show that the proposed method outperforms the backbone network and the state-of-the-art methods, especially in the regions of the capillaries and the vessel contours. In addition, performances on cross-datasets verify that SPNet shows stronger generalization ability.
Abstract:Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event and the clinical decision of treatment planning. To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites. This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features. In this paper, we propose a novel domain adaptation (DA) method with two components to address these problems. The first component is a stochastic class-balanced boosting sampling strategy that overcomes the imbalanced learning problem and improves the classification performance on poorly-predicted classes. The second component is a representation learning that guarantees three properties: 1) domain-transferability by prototype triplet loss, 2) discriminant by conditional maximum mean discrepancy loss, and 3) completeness by multi-view reconstruction loss. Particularly, we propose a domain translator and align the heterogeneous data to the estimated class prototypes (i.e., class centers) in a hyper-sphere manifold. Experiments on cross-site severity assessment of COVID-19 from CT images show that the proposed method can effectively tackle the imbalanced learning problem and outperform recent DA approaches.