Abstract:Autonomous vehicle navigation in shared pedestrian environments requires the ability to predict future crowd motion both accurately and with minimal delay. Understanding the uncertainty of the prediction is also crucial. Most existing approaches however can only estimate uncertainty through repeated sampling of generative models. Additionally, most current predictive models are trained on datasets that assume complete observability of the crowd using an aerial view. These are generally not representative of real-world usage from a vehicle perspective, and can lead to the underestimation of uncertainty bounds when the on-board sensors are occluded. Inspired by prior work in motion prediction using spatio-temporal graphs, we propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph. Our model can be trained to either output a probabilistic distribution or faster deterministic prediction, demonstrating applicability to autonomous vehicle use cases where either speed or accuracy with uncertainty bounds are required. To further improve the training of predictive models, we propose an automatically labelled pedestrian dataset collected from an intelligent vehicle platform representative of real-world use. Through experiments on a number of datasets, we show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
Abstract:Accurate hand pose estimation at joint level has several uses on human-robot interaction, user interfacing and virtual reality applications. Yet, it currently is not a solved problem. The novel deep learning techniques could make a great improvement on this matter but they need a huge amount of annotated data. The hand pose datasets released so far present some issues that make them impossible to use on deep learning methods such as the few number of samples, high-level abstraction annotations or samples consisting in depth maps. In this work, we introduce a multiview hand pose dataset in which we provide color images of hands and different kind of annotations for each, i.e the bounding box and the 2D and 3D location on the joints in the hand. Besides, we introduce a simple yet accurate deep learning architecture for real-time robust 2D hand pose estimation.