Abstract:In Bayesian persuasion, an informed sender strategically discloses information to a receiver so as to persuade them to undertake desirable actions. Recently, a growing attention has been devoted to settings in which sender and receivers interact sequentially. Recently, Markov persuasion processes (MPPs) have been introduced to capture sequential scenarios where a sender faces a stream of myopic receivers in a Markovian environment. The MPPs studied so far in the literature suffer from issues that prevent them from being fully operational in practice, e.g., they assume that the sender knows receivers' rewards. We fix such issues by addressing MPPs where the sender has no knowledge about the environment. We design a learning algorithm for the sender, working with partial feedback. We prove that its regret with respect to an optimal information-disclosure policy grows sublinearly in the number of episodes, as it is the case for the loss in persuasiveness cumulated while learning. Moreover, we provide a lower bound for our setting matching the guarantees of our algorithm.
Abstract:We study principal-agent problems in which a principal commits to an outcome-dependent payment scheme -- called contract -- in order to induce an agent to take a costly, unobservable action leading to favorable outcomes. We consider a generalization of the classical (single-round) version of the problem in which the principal interacts with the agent by committing to contracts over multiple rounds. The principal has no information about the agent, and they have to learn an optimal contract by only observing the outcome realized at each round. We focus on settings in which the size of the agent's action space is small. We design an algorithm that learns an approximately-optimal contract with high probability in a number of rounds polynomial in the size of the outcome space, when the number of actions is constant. Our algorithm solves an open problem by Zhu et al.[2022]. Moreover, it can also be employed to provide a $\tilde{\mathcal{O}}(T^{4/5})$ regret bound in the related online learning setting in which the principal aims at maximizing their cumulative utility, thus considerably improving previously-known regret bounds.
Abstract:Autoregressive processes naturally arise in a large variety of real-world scenarios, including e.g., stock markets, sell forecasting, weather prediction, advertising, and pricing. When addressing a sequential decision-making problem in such a context, the temporal dependence between consecutive observations should be properly accounted for converge to the optimal decision policy. In this work, we propose a novel online learning setting, named Autoregressive Bandits (ARBs), in which the observed reward follows an autoregressive process of order $k$, whose parameters depend on the action the agent chooses, within a finite set of $n$ actions. Then, we devise an optimistic regret minimization algorithm AutoRegressive Upper Confidence Bounds (AR-UCB) that suffers regret of order $\widetilde{\mathcal{O}} \left( \frac{(k+1)^{3/2}\sqrt{nT}}{(1-\Gamma)^2} \right)$, being $T$ the optimization horizon and $\Gamma < 1$ an index of the stability of the system. Finally, we present a numerical validation in several synthetic and one real-world setting, in comparison with general and specific purpose bandit baselines showing the advantages of the proposed approach.