Abstract:Several attempts have been made to handle multiple source separation tasks such as speech enhancement, speech separation, sound event separation, music source separation (MSS), or cinematic audio source separation (CASS) with a single model. These models are trained on large-scale data including speech, instruments, or sound events and can often successfully separate a wide range of sources. However, it is still challenging for such models to cover all separation tasks because some of them are contradictory (e.g., musical instruments are separated in MSS while they have to be grouped in CASS). To overcome this issue and support all the major separation tasks, we propose a task-aware unified source separation (TUSS) model. The model uses a variable number of learnable prompts to specify which source to separate, and changes its behavior depending on the given prompts, enabling it to handle all the major separation tasks including contradictory ones. Experimental results demonstrate that the proposed TUSS model successfully handles the five major separation tasks mentioned earlier. We also provide some audio examples, including both synthetic mixtures and real recordings, to demonstrate how flexibly the TUSS model changes its behavior at inference depending on the prompts.
Abstract:Reverberation as supervision (RAS) is a framework that allows for training monaural speech separation models from multi-channel mixtures in an unsupervised manner. In RAS, models are trained so that sources predicted from a mixture at an input channel can be mapped to reconstruct a mixture at a target channel. However, stable unsupervised training has so far only been achieved in over-determined source-channel conditions, leaving the key determined case unsolved. This work proposes enhanced RAS (ERAS) for solving this problem. Through qualitative analysis, we found that stable training can be achieved by leveraging the loss term to alleviate the frequency-permutation problem. Separation performance is also boosted by adding a novel loss term where separated signals mapped back to their own input mixture are used as pseudo-targets for the signals separated from other channels and mapped to the same channel. Experimental results demonstrate high stability and performance of ERAS.
Abstract:Time-frequency (TF) domain dual-path models achieve high-fidelity speech separation. While some previous state-of-the-art (SoTA) models rely on RNNs, this reliance means they lack the parallelizability, scalability, and versatility of Transformer blocks. Given the wide-ranging success of pure Transformer-based architectures in other fields, in this work we focus on removing the RNN from TF-domain dual-path models, while maintaining SoTA performance. This work presents TF-Locoformer, a Transformer-based model with LOcal-modeling by COnvolution. The model uses feed-forward networks (FFNs) with convolution layers, instead of linear layers, to capture local information, letting the self-attention focus on capturing global patterns. We place two such FFNs before and after self-attention to enhance the local-modeling capability. We also introduce a novel normalization for TF-domain dual-path models. Experiments on separation and enhancement datasets show that the proposed model meets or exceeds SoTA in multiple benchmarks with an RNN-free architecture.
Abstract:In music source separation, a standard training data augmentation procedure is to create new training samples by randomly combining instrument stems from different songs. These random mixes have mismatched characteristics compared to real music, e.g., the different stems do not have consistent beat or tonality, resulting in a cacophony. In this work, we investigate why random mixing is effective when training a state-of-the-art music source separation model in spite of the apparent distribution shift it creates. Additionally, we examine why performance levels off despite potentially limitless combinations, and examine the sensitivity of music source separation performance to differences in beat and tonality of the instrumental sources in a mixture.
Abstract:Head-related transfer functions (HRTFs) are important for immersive audio, and their spatial interpolation has been studied to upsample finite measurements. Recently, neural fields (NFs) which map from sound source direction to HRTF have gained attention. Existing NF-based methods focused on estimating the magnitude of the HRTF from a given sound source direction, and the magnitude is converted to a finite impulse response (FIR) filter. We propose the neural infinite impulse response filter field (NIIRF) method that instead estimates the coefficients of cascaded IIR filters. IIR filters mimic the modal nature of HRTFs, thus needing fewer coefficients to approximate them well compared to FIR filters. We find that our method can match the performance of existing NF-based methods on multiple datasets, even outperforming them when measurements are sparse. We also explore approaches to personalize the NF to a subject and experimentally find low-rank adaptation to be effective.
Abstract:The introduction of audio latent diffusion models possessing the ability to generate realistic sound clips on demand from a text description has the potential to revolutionize how we work with audio. In this work, we make an initial attempt at understanding the inner workings of audio latent diffusion models by investigating how their audio outputs compare with the training data, similar to how a doctor auscultates a patient by listening to the sounds of their organs. Using text-to-audio latent diffusion models trained on the AudioCaps dataset, we systematically analyze memorization behavior as a function of training set size. We also evaluate different retrieval metrics for evidence of training data memorization, finding the similarity between mel spectrograms to be more robust in detecting matches than learned embedding vectors. In the process of analyzing memorization in audio latent diffusion models, we also discover a large amount of duplicated audio clips within the AudioCaps database.
Abstract:In spite of the progress in music source separation research, the small amount of publicly-available clean source data remains a constant limiting factor for performance. Thus, recent advances in self-supervised learning present a largely-unexplored opportunity for improving separation models by leveraging unlabelled music data. In this paper, we propose a self-supervised learning framework for music source separation inspired by the HuBERT speech representation model. We first investigate the potential impact of the original HuBERT model by inserting an adapted version of it into the well-known Demucs V2 time-domain separation model architecture. We then propose a time-frequency-domain self-supervised model, Pac-HuBERT (for primitive auditory clustering HuBERT), that we later use in combination with a Res-U-Net decoder for source separation. Pac-HuBERT uses primitive auditory features of music as unsupervised clustering labels to initialize the self-supervised pretraining process using the Free Music Archive (FMA) dataset. The resulting framework achieves better source-to-distortion ratio (SDR) performance on the MusDB18 test set than the original Demucs V2 and Res-U-Net models. We further demonstrate that it can boost performance with small amounts of supervised data. Ultimately, our proposed framework is an effective solution to the challenge of limited clean source data for music source separation.
Abstract:Diffusion models have recently shown promising results for difficult enhancement tasks such as the conditional and unconditional restoration of natural images and audio signals. In this work, we explore the possibility of leveraging a recently proposed advanced iterative diffusion model, namely cold diffusion, to recover clean speech signals from noisy signals. The unique mathematical properties of the sampling process from cold diffusion could be utilized to restore high-quality samples from arbitrary degradations. Based on these properties, we propose an improved training algorithm and objective to help the model generalize better during the sampling process. We verify our proposed framework by investigating two model architectures. Experimental results on benchmark speech enhancement dataset VoiceBank-DEMAND demonstrate the strong performance of the proposed approach compared to representative discriminative models and diffusion-based enhancement models.
Abstract:Speaker diarization algorithms address the "who spoke when" problem in audio recordings. Algorithms trained end-to-end have proven superior to classical modular-cascaded systems in constrained scenarios with a small number of speakers. However, their performance for in-the-wild recordings containing more speakers with shorter utterance lengths remains to be investigated. In this paper, we address this gap, showing that an attractor-based end-to-end system can also perform remarkably well in the latter scenario when first pre-trained on a carefully-designed simulated dataset that matches the distribution of in-the-wild recordings. We also propose to use an attention mechanism to increase the network capacity in decoding more speaker attractors, and to jointly train the attractors on a speaker recognition task to improve the speaker attractor representation. Even though the model we propose is audio-only, we find it significantly outperforms both audio-only and audio-visual baselines on the AVA-AVD benchmark dataset, achieving state-of-the-art results with an absolute reduction in diarization error of 23.3%.