Abstract:Generating realistic vehicle speed trajectories is a crucial component in evaluating vehicle fuel economy and in predictive control of self-driving cars. Traditional generative models rely on Markov chain methods and can produce accurate synthetic trajectories but are subject to the curse of dimensionality. They do not allow to include conditional input variables into the generation process. In this paper, we show how extensions to deep generative models allow accurate and scalable generation. Proposed architectures involve recurrent and feed-forward layers and are trained using adversarial techniques. Our models are shown to perform well on generating vehicle trajectories using a model trained on GPS data from Chicago metropolitan area.
Abstract:In this paper, we propose Code-Bridged Classifier (CBC), a framework for making a Convolutional Neural Network (CNNs) robust against adversarial attacks without increasing or even by decreasing the overall models' computational complexity. More specifically, we propose a stacked encoder-convolutional model, in which the input image is first encoded by the encoder module of a denoising auto-encoder, and then the resulting latent representation (without being decoded) is fed to a reduced complexity CNN for image classification. We illustrate that this network not only is more robust to adversarial examples but also has a significantly lower computational complexity when compared to the prior art defenses.