Abstract:We present both the Lucie Training Dataset and the Lucie-7B foundation model. The Lucie Training Dataset is a multilingual collection of textual corpora centered around French and designed to offset anglo-centric biases found in many datasets for large language model pretraining. Its French data is pulled not only from traditional web sources, but also from French cultural heritage documents, filling an important gap in modern datasets. Beyond French, which makes up the largest share of the data, we added documents to support several other European languages, including English, Spanish, German, and Italian. Apart from its value as a resource for French language and culture, an important feature of this dataset is that it prioritizes data rights by minimizing copyrighted material. In addition, building on the philosophy of past open projects, it is redistributed in the form used for training and its processing is described on Hugging Face and GitHub. The Lucie-7B foundation model is trained on equal amounts of data in French and English -- roughly 33% each -- in an effort to better represent cultural aspects of French-speaking communities. We also describe two instruction fine-tuned models, Lucie-7B-Instruct-v1.1 and Lucie-7B-Instruct-human-data, which we release as demonstrations of Lucie-7B in use. These models achieve promising results compared to state-of-the-art models, demonstrating that an open approach prioritizing data rights can still deliver strong performance. We see these models as an initial step toward developing more performant, aligned models in the near future. Model weights for Lucie-7B and the Lucie instruct models, along with intermediate checkpoints for the former, are published on Hugging Face, while model training and data preparation code is available on GitHub. This makes Lucie-7B one of the first OSI compliant language models according to the new OSI definition.
Abstract:Researchers and practitioners interested in computational politics rely on automatic content analysis tools to make sense of the large amount of political texts available on the Web. Such tools should provide objective and subjective aspects at different granularity levels to make the analyses useful in practice. Existing methods produce interesting insights for objective aspects, but are limited for subjective ones, are often limited to national contexts, and have limited explainability. We introduce a text analysis framework which integrates both perspectives and provides a fine-grained processing of subjective aspects. Information retrieval techniques and knowledge bases complement powerful natural language processing components to allow a flexible aggregation of results at different granularity levels. Importantly, the proposed bottom-up approach facilitates the explainability of the obtained results. We illustrate its functioning with insights on news outlets, political orientations, topics, individual entities, and demographic segments. The approach is instantiated on a large corpus of French news, but is designed to work seamlessly for other languages and countries.