Abstract:We consider dyadic zero-shot event extraction (EE) to identify actions between pairs of actors. The \emph{zero-shot} setting allows social scientists or other non-computational researchers to extract any customized, user-specified set of events without training, resulting in a \emph{dyadic} event database, allowing insight into sociopolitical relational dynamics among actors and the higher level organizations or countries they represent. Unfortunately, we find that current zero-shot EE methods perform poorly for the task, with issues including word sense ambiguity, modality mismatch, and efficiency. Straightforward application of large language model prompting typically performs even worse. We address these challenges with a new fine-grained, multi-stage generative question-answer method, using a Monte Carlo approach to exploit and overcome the randomness of generative outputs. It performs 90\% fewer queries than a previous approach, with strong performance on the widely-used Automatic Content Extraction dataset. Finally, we extend our method to extract affiliations of actor arguments and demonstrate our method and findings on a dyadic international relations case study.
Abstract:Learning causal structure is useful in many areas of artificial intelligence, including planning, robotics, and explanation. Constraint-based structure learning algorithms such as PC use conditional independence (CI) tests to infer causal structure. Traditionally, constraint-based algorithms perform CI tests with a preference for smaller-sized conditioning sets, partially because the statistical power of conventional CI tests declines rapidly as the size of the conditioning set increases. However, many modern conditional independence tests are model-based, and these tests use well-regularized models that maintain statistical power even with very large conditioning sets. This suggests an intriguing new strategy for constraint-based algorithms which may result in a reduction of the total number of CI tests performed: Test variable pairs with large conditioning sets first, as a pre-processing step that finds some conditional independencies quickly, before moving on to the more conventional strategy that favors small conditioning sets. We propose such a pre-processing step for the PC algorithm which relies on performing CI tests on a few randomly selected large conditioning sets. We perform an empirical analysis on directed acyclic graphs (DAGs) that correspond to real-world systems and both empirical and theoretical analyses for Erd\H{o}s-Renyi DAGs. Our results show that Pre-Processing Plus PC (P3PC) performs far fewer CI tests than the original PC algorithm, between 0.5% to 36%, and often less than 10%, of the CI tests that the PC algorithm alone performs. The efficiency gains are particularly significant for the DAGs corresponding to real-world systems.
Abstract:Benkeser et al. demonstrate how adjustment for baseline covariates in randomized trials can meaningfully improve precision for a variety of outcome types, including binary, ordinal, and time-to-event. Their findings build on a long history, starting in 1932 with R.A. Fisher and including the more recent endorsements by the U.S. Food and Drug Administration and the European Medicines Agency. Here, we address an important practical consideration: how to select the adjustment approach -- which variables and in which form -- to maximize precision, while maintaining nominal confidence interval coverage. Balzer et al. previously proposed, evaluated, and applied Adaptive Prespecification to flexibly select, from a prespecified set, the variables that maximize empirical efficiency in small randomized trials (N<40). To avoid overfitting with few randomized units, adjustment was previously limited to a single covariate in a working generalized linear model (GLM) for the expected outcome and a single covariate in a working GLM for the propensity score. Here, we tailor Adaptive Prespecification to trials with many randomized units. Specifically, using V-fold cross-validation and the squared influence curve as the loss function, we select from an expanded set of candidate algorithms, including both parametric and semi-parametric methods, the optimal combination of estimators of the expected outcome and known propensity score. Using simulations, under a variety of data generating processes, we demonstrate the dramatic gains in precision offered by our novel approach.
Abstract:Recent work in reinforcement learning has focused on several characteristics of learned policies that go beyond maximizing reward. These properties include fairness, explainability, generalization, and robustness. In this paper, we define interventional robustness (IR), a measure of how much variability is introduced into learned policies by incidental aspects of the training procedure, such as the order of training data or the particular exploratory actions taken by agents. A training procedure has high IR when the agents it produces take very similar actions under intervention, despite variation in these incidental aspects of the training procedure. We develop an intuitive, quantitative measure of IR and calculate it for eight algorithms in three Atari environments across dozens of interventions and states. From these experiments, we find that IR varies with the amount of training and type of algorithm and that high performance does not imply high IR, as one might expect.