Abstract:We introduce Meta 3D Gen (3DGen), a new state-of-the-art, fast pipeline for text-to-3D asset generation. 3DGen offers 3D asset creation with high prompt fidelity and high-quality 3D shapes and textures in under a minute. It supports physically-based rendering (PBR), necessary for 3D asset relighting in real-world applications. Additionally, 3DGen supports generative retexturing of previously generated (or artist-created) 3D shapes using additional textual inputs provided by the user. 3DGen integrates key technical components, Meta 3D AssetGen and Meta 3D TextureGen, that we developed for text-to-3D and text-to-texture generation, respectively. By combining their strengths, 3DGen represents 3D objects simultaneously in three ways: in view space, in volumetric space, and in UV (or texture) space. The integration of these two techniques achieves a win rate of 68% with respect to the single-stage model. We compare 3DGen to numerous industry baselines, and show that it outperforms them in terms of prompt fidelity and visual quality for complex textual prompts, while being significantly faster.
Abstract:In this work, we introduce three generic point cloud processing blocks that improve both accuracy and memory consumption of state-of-the-art networks thus allowing to design deeper and more accurate networks. The novel processing blocks are: a multi-resolution point cloud processing block; a convolution-type operation for point sets that blends neighborhood information in a memory-efficient manner; and a crosslink block that efficiently shares information across low- and high-resolution processing branches. Combining these blocks allows us to design significantly wider and deeper architectures. We extensively evaluate the proposed architectures on multiple point segmentation benchmarks (ShapeNet-Part, ScanNet, PartNet) and report systematic improvements in terms of both accuracy and memory consumption by using our generic modules in conjunction with multiple recent architectures (PointNet++, DGCNN, SpiderCNN, PointCNN). We report a 3.4% increase in IoU on the -most complex- PartNet dataset while decreasing memory footprint by 57%.