Abstract:We address a core problem in causal inference: estimating heterogeneous treatment effects using panel data with general treatment patterns. Many existing methods either do not utilize the potential underlying structure in panel data or have limitations in the allowable treatment patterns. In this work, we propose and evaluate a new method that first partitions observations into disjoint clusters with similar treatment effects using a regression tree, and then leverages the (assumed) low-rank structure of the panel data to estimate the average treatment effect for each cluster. Our theoretical results establish the convergence of the resulting estimates to the true treatment effects. Computation experiments with semi-synthetic data show that our method achieves superior accuracy compared to alternative approaches, using a regression tree with no more than 40 leaves. Hence, our method provides more accurate and interpretable estimates than alternative methods.
Abstract:Recent deep learning models have shown remarkable performance in image classification. While these deep learning systems are getting closer to practical deployment, the common assumption made about data is that it does not carry any sensitive information. This assumption may not hold for many practical cases, especially in the domain where an individual's personal information is involved, like healthcare and facial recognition systems. We posit that selectively removing features in this latent space can protect the sensitive information and provide a better privacy-utility trade-off. Consequently, we propose DISCO which learns a dynamic and data driven pruning filter to selectively obfuscate sensitive information in the feature space. We propose diverse attack schemes for sensitive inputs \& attributes and demonstrate the effectiveness of DISCO against state-of-the-art methods through quantitative and qualitative evaluation. Finally, we also release an evaluation benchmark dataset of 1 million sensitive representations to encourage rigorous exploration of novel attack schemes.