Abstract:The training or fine-tuning of machine learning, vision, and language models is often implemented as a pipeline: a sequence of stages encompassing data preparation, model training and evaluation. In this paper, we exploit pipeline structures to reduce the cost of hyperparameter tuning for model training/fine-tuning, which is particularly valuable for language models given their high costs in GPU-days. We propose a "memoization-aware" Bayesian Optimization (BO) algorithm, EEIPU, that works in tandem with a pipeline caching system, allowing it to evaluate significantly more hyperparameter candidates per GPU-day than other tuning algorithms. The result is better-quality hyperparameters in the same amount of search time, or equivalently, reduced search time to reach the same hyperparameter quality. In our benchmarks on machine learning (model ensembles), vision (convolutional architecture) and language (T5 architecture) pipelines, we compare EEIPU against recent BO algorithms: EEIPU produces an average of $103\%$ more hyperparameter candidates (within the same budget), and increases the validation metric by an average of $108\%$ more than other algorithms (where the increase is measured starting from the end of warm-up iterations).
Abstract:The increase in renewable energy on the consumer side gives place to new dynamics in the energy grids. Participants in a microgrid can produce energy and trade it with their peers (peer-to-peer) with the permission of the energy provider. In such a scenario, the stochastic nature of distributed renewable energy generators and energy consumption increases the complexity of defining fair prices for buying and selling energy. In this study, we introduce a reinforcement learning framework to help solve this issue by training an agent to set the prices that maximize the profit of all components in the microgrid, aiming to facilitate the implementation of P2P grids in real-life scenarios. The microgrid considers consumers, prosumers, the service provider, and a community battery. Experimental results on the \textit{Pymgrid} dataset show a successful approach to price optimization for all components in the microgrid. The proposed framework ensures flexibility to account for the interest of these components, as well as the ratio of consumers and prosumers in the microgrid. The results also examine the effect of changing the capacity of the community battery on the profit of the system. The implementation code is available \href{https://github.com/Artifitialleap-MBZUAI/rl-p2p-price-prediction}{here}.