Abstract:Industry 4.0 and Internet of Things (IoT) technologies unlock unprecedented amount of data from factory production, posing big data challenges in volume and variety. In that context, distributed computing solutions such as cloud systems are leveraged to parallelise the data processing and reduce computation time. As the cloud systems become increasingly popular, there is increased demand that more users that were originally not cloud experts (such as data scientists, domain experts) deploy their solutions on the cloud systems. However, it is non-trivial to address both the high demand for cloud system users and the excessive time required to train them. To this end, we propose SemCloud, a semantics-enhanced cloud system, that couples cloud system with semantic technologies and machine learning. SemCloud relies on domain ontologies and mappings for data integration, and parallelises the semantic data integration and data analysis on distributed computing nodes. Furthermore, SemCloud adopts adaptive Datalog rules and machine learning for automated resource configuration, allowing non-cloud experts to use the cloud system. The system has been evaluated in industrial use case with millions of data, thousands of repeated runs, and domain users, showing promising results.
Abstract:Prompt-based language models have produced encouraging results in numerous applications, including Named Entity Recognition (NER) tasks. NER aims to identify entities in a sentence and provide their types. However, the strong performance of most available NER approaches is heavily dependent on the design of discrete prompts and a verbalizer to map the model-predicted outputs to entity categories, which are complicated undertakings. To address these challenges, we present ContrastNER, a prompt-based NER framework that employs both discrete and continuous tokens in prompts and uses a contrastive learning approach to learn the continuous prompts and forecast entity types. The experimental results demonstrate that ContrastNER obtains competitive performance to the state-of-the-art NER methods in high-resource settings and outperforms the state-of-the-art models in low-resource circumstances without requiring extensive manual prompt engineering and verbalizer design.