for the Alzheimer's Disease Neuroimaging Initiative
Abstract:Identifying amyloid-beta positive patients is crucial for determining eligibility for Alzheimer's disease (AD) clinical trials and new disease-modifying treatments, but currently requires PET or CSF sampling. Previous MRI-based deep learning models for predicting amyloid positivity, using only T1w sequences, have shown moderate performance. We trained deep learning models to predict amyloid PET positivity and evaluated whether multi-contrast inputs improve performance. A total of 4,058 exams with multi-contrast MRI and PET-based quantitative amyloid deposition were obtained from three public datasets: the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Open Access Series of Imaging Studies 3 (OASIS3), and the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4). Two separate EfficientNet models were trained for amyloid positivity prediction: one with only T1w images and the other with both T1w and T2-FLAIR images as network inputs. The area under the curve (AUC), accuracy, sensitivity, and specificity were determined using an internal held-out test set. The trained models were further evaluated using an external test set. In the held-out test sets, the T1w and T1w+T2FLAIR models demonstrated AUCs of 0.62 (95% CI: 0.60, 0.64) and 0.67 (95% CI: 0.64, 0.70) (p = 0.006); accuracies were 61% (95% CI: 60%, 63%) and 64% (95% CI: 62%, 66%) (p = 0.008); sensitivities were 0.88 and 0.71; and specificities were 0.23 and 0.53, respectively. The trained models showed similar performance in the external test set. Performance of the current model on both test sets exceeded that of the publicly available model. In conclusion, the use of multi-contrast MRI, specifically incorporating T2-FLAIR in addition to T1w images, significantly improved the predictive accuracy of PET-determined amyloid status from MRI scans using a deep learning approach.
Abstract:Recently, we have observed that Large Multi-modal Models (LMMs) are revolutionizing the way machines interact with the world, unlocking new possibilities across various multi-modal applications. To adapt LMMs for downstream tasks, parameter-efficient fine-tuning (PEFT) which only trains additional prefix tokens or modules, has gained popularity. Nevertheless, there has been little analysis of how PEFT works in LMMs. In this paper, we delve into the strengths and weaknesses of each tuning strategy, shifting the focus from the efficiency typically associated with these approaches. We first discover that model parameter tuning methods such as LoRA and Adapters distort the feature representation space learned during pre-training and limit the full utilization of pre-trained knowledge. We also demonstrate that prefix-tuning excels at preserving the representation space, despite its lower performance on downstream tasks. These findings suggest a simple two-step PEFT strategy called Prefix-Tuned PEFT (PT-PEFT), which successively performs prefix-tuning and then PEFT (i.e., Adapter, LoRA), combines the benefits of both. Experimental results show that PT-PEFT not only improves performance in image captioning and visual question answering compared to vanilla PEFT methods but also helps preserve the representation space of the four pre-trained models.
Abstract:Goal-conditioned (GC) policy learning often faces a challenge arising from the sparsity of rewards, when confronting long-horizon goals. To address the challenge, we explore skill-based GC policy learning in offline settings, where skills are acquired from existing data and long-horizon goals are decomposed into sequences of near-term goals that align with these skills. Specifically, we present an `offline GC policy learning via skill-step abstraction' framework (GLvSA) tailored for tackling long-horizon GC tasks affected by goal distribution shifts. In the framework, a GC policy is progressively learned offline in conjunction with the incremental modeling of skill-step abstractions on the data. We also devise a GC policy hierarchy that not only accelerates GC policy learning within the framework but also allows for parameter-efficient fine-tuning of the policy. Through experiments with the maze and Franka kitchen environments, we demonstrate the superiority and efficiency of our GLvSA framework in adapting GC policies to a wide range of long-horizon goals. The framework achieves competitive zero-shot and few-shot adaptation performance, outperforming existing GC policy learning and skill-based methods.
Abstract:Recently, we are witnessing the remarkable progress and widespread adoption of sensing technologies in autonomous driving, robotics, and metaverse. Considering the rapid advancement of computer vision (CV) technology to analyze the sensing information, we anticipate a proliferation of wireless applications exploiting the sensing and CV technologies in 6G. In this article, we provide a holistic overview of the sensing and CV-aided wireless communications (SVWC) framework for 6G. By analyzing the high-resolution sensing information through the powerful CV techniques, SVWC can quickly and accurately understand the wireless environments and then perform the wireless tasks. To demonstrate the efficacy of SVWC, we design the whole process of SVWC including the sensing dataset collection, DL model training, and execution of realistic wireless tasks. From the numerical evaluations on 6G communication scenarios, we show that SVWC achieves considerable performance gains over the conventional 5G systems in terms of positioning accuracy, data rate, and access latency.