Abstract:Goal-conditioned (GC) policy learning often faces a challenge arising from the sparsity of rewards, when confronting long-horizon goals. To address the challenge, we explore skill-based GC policy learning in offline settings, where skills are acquired from existing data and long-horizon goals are decomposed into sequences of near-term goals that align with these skills. Specifically, we present an `offline GC policy learning via skill-step abstraction' framework (GLvSA) tailored for tackling long-horizon GC tasks affected by goal distribution shifts. In the framework, a GC policy is progressively learned offline in conjunction with the incremental modeling of skill-step abstractions on the data. We also devise a GC policy hierarchy that not only accelerates GC policy learning within the framework but also allows for parameter-efficient fine-tuning of the policy. Through experiments with the maze and Franka kitchen environments, we demonstrate the superiority and efficiency of our GLvSA framework in adapting GC policies to a wide range of long-horizon goals. The framework achieves competitive zero-shot and few-shot adaptation performance, outperforming existing GC policy learning and skill-based methods.
Abstract:Recently, we are witnessing the remarkable progress and widespread adoption of sensing technologies in autonomous driving, robotics, and metaverse. Considering the rapid advancement of computer vision (CV) technology to analyze the sensing information, we anticipate a proliferation of wireless applications exploiting the sensing and CV technologies in 6G. In this article, we provide a holistic overview of the sensing and CV-aided wireless communications (SVWC) framework for 6G. By analyzing the high-resolution sensing information through the powerful CV techniques, SVWC can quickly and accurately understand the wireless environments and then perform the wireless tasks. To demonstrate the efficacy of SVWC, we design the whole process of SVWC including the sensing dataset collection, DL model training, and execution of realistic wireless tasks. From the numerical evaluations on 6G communication scenarios, we show that SVWC achieves considerable performance gains over the conventional 5G systems in terms of positioning accuracy, data rate, and access latency.