Abstract:Recently, a new form of online shopping becomes more and more popular, which combines live streaming with E-Commerce activity. The streamers introduce products and interact with their audiences, and hence greatly improve the performance of selling products. Despite of the successful applications in industries, the live stream E-commerce has not been well studied in the data science community. To fill this gap, we investigate this brand-new scenario and collect a real-world Live Stream E-Commerce (LSEC) dataset. Different from conventional E-commerce activities, the streamers play a pivotal role in the LSEC events. Hence, the key is to make full use of rich interaction information among streamers, users, and products. We first conduct data analysis on the tripartite interaction data and quantify the streamer's influence on users' purchase behavior. Based on the analysis results, we model the tripartite information as a heterogeneous graph, which can be decomposed to multiple bipartite graphs in order to better capture the influence. We propose a novel Live Stream E-Commerce Graph Neural Network framework (LSEC-GNN) to learn the node representations of each bipartite graph, and further design a multi-task learning approach to improve product recommendation. Extensive experiments on two real-world datasets with different scales show that our method can significantly outperform various baseline approaches.
Abstract:Unsupervised domain adaptation aims to transfer the classifier learned from the source domain to the target domain in an unsupervised manner. With the help of target pseudo-labels, aligning class-level distributions and learning the classifier in the target domain are two widely used objectives. Existing methods often separately optimize these two individual objectives, which makes them suffer from the neglect of the other. However, optimizing these two aspects together is not trivial. To alleviate the above issues, we propose a novel method that jointly optimizes semantic domain alignment and target classifier learning in a holistic way. The joint optimization mechanism can not only eliminate their weaknesses but also complement their strengths. The theoretical analysis also verifies the favor of the joint optimization mechanism. Extensive experiments on benchmark datasets show that the proposed method yields the best performance in comparison with the state-of-the-art unsupervised domain adaptation methods.