DAO
Abstract:Analyzing volumetric data with rotational invariance or equivariance is an active topic in current research. Existing deep-learning approaches utilize either group convolutional networks limited to discrete rotations or steerable convolutional networks with constrained filter structures. This work proposes a novel equivariant neural network architecture that achieves analytical Equivariance to Local Pattern Orientation on the continuous SO(3) group while allowing unconstrained trainable filters - EquiLoPO Network. Our key innovations are a group convolutional operation leveraging irreducible representations as the Fourier basis and a local activation function in the SO(3) space that provides a well-defined mapping from input to output functions, preserving equivariance. By integrating these operations into a ResNet-style architecture, we propose a model that overcomes the limitations of prior methods. A comprehensive evaluation on diverse 3D medical imaging datasets from MedMNIST3D demonstrates the effectiveness of our approach, which consistently outperforms state of the art. This work suggests the benefits of true rotational equivariance on SO(3) and flexible unconstrained filters enabled by the local activation function, providing a flexible framework for equivariant deep learning on volumetric data with potential applications across domains. Our code is publicly available at \url{https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/ILPO/-/tree/main/EquiLoPO}.
Abstract:Effective recognition of spatial patterns and learning their hierarchy is crucial in modern spatial data analysis. Volumetric data applications seek techniques ensuring invariance not only to shifts but also to pattern rotations. While traditional methods can readily achieve translational invariance, rotational invariance possesses multiple challenges and remains an active area of research. Here, we present ILPO-Net (Invariant to Local Patterns Orientation Network), a novel approach that handles arbitrarily shaped patterns with the convolutional operation inherently invariant to local spatial pattern orientations using the Wigner matrix expansions. Our architecture seamlessly integrates the new convolution operator and, when benchmarked on diverse volumetric datasets such as MedMNIST and CATH, demonstrates superior performance over the baselines with significantly reduced parameter counts - up to 1000 times fewer in the case of MedMNIST. Beyond these demonstrations, ILPO-Net's rotational invariance paves the way for other applications across multiple disciplines. Our code is publicly available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/ILPONet.
Abstract:In this work, we introduce 6D Convolutional Neural Network (6DCNN) designed to tackle the problem of detecting relative positions and orientations of local patterns when processing three-dimensional volumetric data. 6DCNN also includes SE(3)-equivariant message-passing and nonlinear activation operations constructed in the Fourier space. Working in the Fourier space allows significantly reducing the computational complexity of our operations. We demonstrate the properties of the 6D convolution and its efficiency in the recognition of spatial patterns. We also assess the 6DCNN model on several datasets from the recent CASP protein structure prediction challenges. Here, 6DCNN improves over the baseline architecture and also outperforms the state of the art.