Abstract:AI4EF, Artificial Intelligence for Energy Efficiency, is an advanced, user-centric tool designed to support decision-making in building energy retrofitting and efficiency optimization. Leveraging machine learning (ML) and data-driven insights, AI4EF enables stakeholders such as public sector representatives, energy consultants, and building owners to model, analyze, and predict energy consumption, retrofit costs, and environmental impacts of building upgrades. Featuring a modular framework, AI4EF includes customizable building retrofitting, photovoltaic installation assessment, and predictive modeling tools that allow users to input building parameters and receive tailored recommendations for achieving energy savings and carbon reduction goals. Additionally, the platform incorporates a Training Playground for data scientists to refine ML models used by said framework. Finally, AI4EF provides access to the Enershare Data Space to facilitate seamless data sharing and access within the ecosystem. Its compatibility with open-source identity management, Keycloak, enhances security and accessibility, making it adaptable for various regulatory and organizational contexts. This paper presents an architectural overview of AI4EF, its application in energy efficiency scenarios, and its potential for advancing sustainable energy practices through artificial intelligence (AI).
Abstract:The advent of 6G/NextG networks comes along with a series of benefits, including extreme capacity, reliability, and efficiency. However, these networks may become vulnerable to new security threats. Therefore, 6G/NextG networks must be equipped with advanced Artificial Intelligence algorithms, in order to evade these attacks. Existing studies on the intrusion detection task rely on the train of shallow machine learning classifiers, including Logistic Regression, Decision Trees, and so on, yielding suboptimal performance. Others are based on deep neural networks consisting of static components, which are not conditional on the input. This limits their representation power and efficiency. To resolve these issues, we present the first study integrating Mixture of Experts (MoE) for identifying malicious traffic. Specifically, we use network traffic data and convert the 1D array of features into a 2D matrix. Next, we pass this matrix through convolutional neural network (CNN) layers followed by batch normalization and max pooling layers. After obtaining the representation vector via the CNN layers, a sparsely gated MoE layer is used. This layer consists of a set of experts (dense layers) and a router, where the router assigns weights to the output of each expert. Sparsity is achieved by choosing the most relevant experts of the total ones. Finally, we perform a series of ablation experiments to prove the effectiveness of our proposed model. Experiments are conducted on the 5G-NIDD dataset, a network intrusion detection dataset generated from a real 5G test network. Results show that our introduced approach reaches weighted F1-score up to 99.95% achieving comparable performance to existing approaches. Findings also show that our proposed model achieves multiple advantages over state-of-the-art approaches.
Abstract:Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots-automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.
Abstract:Central to achieving the energy transition, heating systems provide essential space heating and hot water in residential and industrial environments. A major challenge lies in effectively profiling large clusters of buildings to improve demand estimation and enable efficient Demand Response (DR) schemes. This paper addresses this challenge by introducing an unsupervised machine learning framework for clustering residential heating load profiles, focusing on natural gas space heating and hot water preparation boilers. The profiles are analyzed across five dimensions: boiler usage, heating demand, weather conditions, building characteristics, and user behavior. We apply three distance metrics: Euclidean Distance (ED), Dynamic Time Warping (DTW), and Derivative Dynamic Time Warping (DDTW), and evaluate their performance using established clustering indices. The proposed method is assessed considering 29 residential buildings in Greece equipped with smart meters throughout a calendar heating season (i.e., 210 days). Results indicate that DTW is the most suitable metric, uncovering strong correlations between boiler usage, heat demand, and temperature, while ED highlights broader interrelations across dimensions and DDTW proves less effective, resulting in weaker clusters. These findings offer key insights into heating load behavior, establishing a solid foundation for developing more targeted and effective DR programs.
Abstract:The analytical prediction of building energy performance in residential buildings based on the heat losses of its individual envelope components is a challenging task. It is worth noting that this field is still in its infancy, with relatively limited research conducted in this specific area to date, especially when it comes for data-driven approaches. In this paper we introduce a novel physics-informed neural network model for addressing this problem. Through the employment of unexposed datasets that encompass general building information, audited characteristics, and heating energy consumption, we feed the deep learning model with general building information, while the model's output consists of the structural components and several thermal properties that are in fact the basic elements of an energy performance certificate (EPC). On top of this neural network, a function, based on physics equations, calculates the energy consumption of the building based on heat losses and enhances the loss function of the deep learning model. This methodology is tested on a real case study for 256 buildings located in Riga, Latvia. Our investigation comes up with promising results in terms of prediction accuracy, paving the way for automated, and data-driven energy efficiency performance prediction based on basic properties of the building, contrary to exhaustive energy efficiency audits led by humans, which are the current status quo.
Abstract:Short-term load forecasting (STLF) is crucial for the daily operation of power grids. However, the non-linearity, non-stationarity, and randomness characterizing electricity demand time series renders STLF a challenging task. Various forecasting approaches have been proposed for improving STLF, including neural network (NN) models which are trained using data from multiple electricity demand series that may not necessary include the target series. In the present study, we investigate the performance of this special case of STLF, called transfer learning (TL), by considering a set of 27 time series that represent the national day-ahead electricity demand of indicative European countries. We employ a popular and easy-to-implement NN model and perform a clustering analysis to identify similar patterns among the series and assist TL. In this context, two different TL approaches, with and without the clustering step, are compiled and compared against each other as well as a typical NN training setup. Our results demonstrate that TL can outperform the conventional approach, especially when clustering techniques are considered.
Abstract:Although not all bots are malicious, the vast majority of them are responsible for spreading misinformation and manipulating the public opinion about several issues, i.e., elections and many more. Therefore, the early detection of social spambots is crucial. Although there have been proposed methods for detecting bots in social media, there are still substantial limitations. For instance, existing research initiatives still extract a large number of features and train traditional machine learning algorithms or use GloVe embeddings and train LSTMs. However, feature extraction is a tedious procedure demanding domain expertise. Also, language models based on transformers have been proved to be better than LSTMs. Other approaches create large graphs and train graph neural networks requiring in this way many hours for training and access to computational resources. To tackle these limitations, this is the first study employing only the user description field and images of three channels denoting the type and content of tweets posted by the users. Firstly, we create digital DNA sequences, transform them to 3d images, and apply pretrained models of the vision domain, including EfficientNet, AlexNet, VGG16, etc. Next, we propose a multimodal approach, where we use TwHIN-BERT for getting the textual representation of the user description field and employ VGG16 for acquiring the visual representation for the image modality. We propose three different fusion methods, namely concatenation, gated multimodal unit, and crossmodal attention, for fusing the different modalities and compare their performances. Extensive experiments conducted on the Cresci '17 dataset demonstrate valuable advantages of our introduced approaches over state-of-the-art ones reaching Accuracy up to 99.98%.
Abstract:This paper presents DeepTSF, a comprehensive machine learning operations (MLOps) framework aiming to innovate time series forecasting through workflow automation and codeless modeling. DeepTSF automates key aspects of the ML lifecycle, making it an ideal tool for data scientists and MLops engineers engaged in machine learning (ML) and deep learning (DL)-based forecasting. DeepTSF empowers users with a robust and user-friendly solution, while it is designed to seamlessly integrate with existing data analysis workflows, providing enhanced productivity and compatibility. The framework offers a front-end user interface (UI) suitable for data scientists, as well as other higher-level stakeholders, enabling comprehensive understanding through insightful visualizations and evaluation metrics. DeepTSF also prioritizes security through identity management and access authorization mechanisms. The application of DeepTSF in real-life use cases of the I-NERGY project has already proven DeepTSF's efficacy in DL-based load forecasting, showcasing its significant added value in the electrical power and energy systems domain.
Abstract:Stress and depression are prevalent nowadays across people of all ages due to the quick paces of life. People use social media to express their feelings. Thus, social media constitute a valuable form of information for the early detection of stress and depression. Although many research works have been introduced targeting the early recognition of stress and depression, there are still limitations. There have been proposed multi-task learning settings, which use depression and emotion (or figurative language) as the primary and auxiliary tasks respectively. However, although stress is inextricably linked with depression, researchers face these two tasks as two separate tasks. To address these limitations, we present the first study, which exploits two different datasets collected under different conditions, and introduce two multitask learning frameworks, which use depression and stress as the main and auxiliary tasks respectively. Specifically, we use a depression dataset and a stressful dataset including stressful posts from ten subreddits of five domains. In terms of the first approach, each post passes through a shared BERT layer, which is updated by both tasks. Next, two separate BERT encoder layers are exploited, which are updated by each task separately. Regarding the second approach, it consists of shared and task-specific layers weighted by attention fusion networks. We conduct a series of experiments and compare our approaches with existing research initiatives, single-task learning, and transfer learning. Experiments show multiple advantages of our approaches over state-of-the-art ones.
Abstract:In today's fast-paced world, the rates of stress and depression present a surge. Social media provide assistance for the early detection of mental health conditions. Existing methods mainly introduce feature extraction approaches and train shallow machine learning classifiers. Other researches use deep neural networks or transformers. Despite the fact that transformer-based models achieve noticeable improvements, they cannot often capture rich factual knowledge. Although there have been proposed a number of studies aiming to enhance the pretrained transformer-based models with extra information or additional modalities, no prior work has exploited these modifications for detecting stress and depression through social media. In addition, although the reliability of a machine learning model's confidence in its predictions is critical for high-risk applications, there is no prior work taken into consideration the model calibration. To resolve the above issues, we present the first study in the task of depression and stress detection in social media, which injects extra linguistic information in transformer-based models, namely BERT and MentalBERT. Specifically, the proposed approach employs a Multimodal Adaptation Gate for creating the combined embeddings, which are given as input to a BERT (or MentalBERT) model. For taking into account the model calibration, we apply label smoothing. We test our proposed approaches in three publicly available datasets and demonstrate that the integration of linguistic features into transformer-based models presents a surge in the performance. Also, the usage of label smoothing contributes to both the improvement of the model's performance and the calibration of the model. We finally perform a linguistic analysis of the posts and show differences in language between stressful and non-stressful texts, as well as depressive and non-depressive posts.