Abstract:The analytical prediction of building energy performance in residential buildings based on the heat losses of its individual envelope components is a challenging task. It is worth noting that this field is still in its infancy, with relatively limited research conducted in this specific area to date, especially when it comes for data-driven approaches. In this paper we introduce a novel physics-informed neural network model for addressing this problem. Through the employment of unexposed datasets that encompass general building information, audited characteristics, and heating energy consumption, we feed the deep learning model with general building information, while the model's output consists of the structural components and several thermal properties that are in fact the basic elements of an energy performance certificate (EPC). On top of this neural network, a function, based on physics equations, calculates the energy consumption of the building based on heat losses and enhances the loss function of the deep learning model. This methodology is tested on a real case study for 256 buildings located in Riga, Latvia. Our investigation comes up with promising results in terms of prediction accuracy, paving the way for automated, and data-driven energy efficiency performance prediction based on basic properties of the building, contrary to exhaustive energy efficiency audits led by humans, which are the current status quo.
Abstract:Short-term load forecasting (STLF) is crucial for the daily operation of power grids. However, the non-linearity, non-stationarity, and randomness characterizing electricity demand time series renders STLF a challenging task. Various forecasting approaches have been proposed for improving STLF, including neural network (NN) models which are trained using data from multiple electricity demand series that may not necessary include the target series. In the present study, we investigate the performance of this special case of STLF, called transfer learning (TL), by considering a set of 27 time series that represent the national day-ahead electricity demand of indicative European countries. We employ a popular and easy-to-implement NN model and perform a clustering analysis to identify similar patterns among the series and assist TL. In this context, two different TL approaches, with and without the clustering step, are compiled and compared against each other as well as a typical NN training setup. Our results demonstrate that TL can outperform the conventional approach, especially when clustering techniques are considered.
Abstract:Although not all bots are malicious, the vast majority of them are responsible for spreading misinformation and manipulating the public opinion about several issues, i.e., elections and many more. Therefore, the early detection of social spambots is crucial. Although there have been proposed methods for detecting bots in social media, there are still substantial limitations. For instance, existing research initiatives still extract a large number of features and train traditional machine learning algorithms or use GloVe embeddings and train LSTMs. However, feature extraction is a tedious procedure demanding domain expertise. Also, language models based on transformers have been proved to be better than LSTMs. Other approaches create large graphs and train graph neural networks requiring in this way many hours for training and access to computational resources. To tackle these limitations, this is the first study employing only the user description field and images of three channels denoting the type and content of tweets posted by the users. Firstly, we create digital DNA sequences, transform them to 3d images, and apply pretrained models of the vision domain, including EfficientNet, AlexNet, VGG16, etc. Next, we propose a multimodal approach, where we use TwHIN-BERT for getting the textual representation of the user description field and employ VGG16 for acquiring the visual representation for the image modality. We propose three different fusion methods, namely concatenation, gated multimodal unit, and crossmodal attention, for fusing the different modalities and compare their performances. Extensive experiments conducted on the Cresci '17 dataset demonstrate valuable advantages of our introduced approaches over state-of-the-art ones reaching Accuracy up to 99.98%.
Abstract:This paper presents DeepTSF, a comprehensive machine learning operations (MLOps) framework aiming to innovate time series forecasting through workflow automation and codeless modeling. DeepTSF automates key aspects of the ML lifecycle, making it an ideal tool for data scientists and MLops engineers engaged in machine learning (ML) and deep learning (DL)-based forecasting. DeepTSF empowers users with a robust and user-friendly solution, while it is designed to seamlessly integrate with existing data analysis workflows, providing enhanced productivity and compatibility. The framework offers a front-end user interface (UI) suitable for data scientists, as well as other higher-level stakeholders, enabling comprehensive understanding through insightful visualizations and evaluation metrics. DeepTSF also prioritizes security through identity management and access authorization mechanisms. The application of DeepTSF in real-life use cases of the I-NERGY project has already proven DeepTSF's efficacy in DL-based load forecasting, showcasing its significant added value in the electrical power and energy systems domain.
Abstract:Stress and depression are prevalent nowadays across people of all ages due to the quick paces of life. People use social media to express their feelings. Thus, social media constitute a valuable form of information for the early detection of stress and depression. Although many research works have been introduced targeting the early recognition of stress and depression, there are still limitations. There have been proposed multi-task learning settings, which use depression and emotion (or figurative language) as the primary and auxiliary tasks respectively. However, although stress is inextricably linked with depression, researchers face these two tasks as two separate tasks. To address these limitations, we present the first study, which exploits two different datasets collected under different conditions, and introduce two multitask learning frameworks, which use depression and stress as the main and auxiliary tasks respectively. Specifically, we use a depression dataset and a stressful dataset including stressful posts from ten subreddits of five domains. In terms of the first approach, each post passes through a shared BERT layer, which is updated by both tasks. Next, two separate BERT encoder layers are exploited, which are updated by each task separately. Regarding the second approach, it consists of shared and task-specific layers weighted by attention fusion networks. We conduct a series of experiments and compare our approaches with existing research initiatives, single-task learning, and transfer learning. Experiments show multiple advantages of our approaches over state-of-the-art ones.
Abstract:In today's fast-paced world, the rates of stress and depression present a surge. Social media provide assistance for the early detection of mental health conditions. Existing methods mainly introduce feature extraction approaches and train shallow machine learning classifiers. Other researches use deep neural networks or transformers. Despite the fact that transformer-based models achieve noticeable improvements, they cannot often capture rich factual knowledge. Although there have been proposed a number of studies aiming to enhance the pretrained transformer-based models with extra information or additional modalities, no prior work has exploited these modifications for detecting stress and depression through social media. In addition, although the reliability of a machine learning model's confidence in its predictions is critical for high-risk applications, there is no prior work taken into consideration the model calibration. To resolve the above issues, we present the first study in the task of depression and stress detection in social media, which injects extra linguistic information in transformer-based models, namely BERT and MentalBERT. Specifically, the proposed approach employs a Multimodal Adaptation Gate for creating the combined embeddings, which are given as input to a BERT (or MentalBERT) model. For taking into account the model calibration, we apply label smoothing. We test our proposed approaches in three publicly available datasets and demonstrate that the integration of linguistic features into transformer-based models presents a surge in the performance. Also, the usage of label smoothing contributes to both the improvement of the model's performance and the calibration of the model. We finally perform a linguistic analysis of the posts and show differences in language between stressful and non-stressful texts, as well as depressive and non-depressive posts.
Abstract:Alzheimer's disease (AD) constitutes a complex neurocognitive disease and is the main cause of dementia. Although many studies have been proposed targeting at diagnosing dementia through spontaneous speech, there are still limitations. Existing state-of-the-art approaches, which propose multimodal methods, train separately language and acoustic models, employ majority-vote approaches, and concatenate the representations of the different modalities either at the input level, i.e., early fusion, or during training. Also, some of them employ self-attention layers, which calculate the dependencies between representations without considering the contextual information. In addition, no prior work has taken into consideration the model calibration. To address these limitations, we propose some new methods for detecting AD patients, which capture the intra- and cross-modal interactions. First, we convert the audio files into log-Mel spectrograms, their delta, and delta-delta and create in this way an image per audio file consisting of three channels. Next, we pass each transcript and image through BERT and DeiT models respectively. After that, context-based self-attention layers, self-attention layers with a gate model, and optimal transport domain adaptation methods are employed for capturing the intra- and inter-modal interactions. Finally, we exploit two methods for fusing the self and cross-attended features. For taking into account the model calibration, we apply label smoothing. We use both performance and calibration metrics. Experiments conducted on the ADReSS Challenge dataset indicate the efficacy of our introduced approaches over existing research initiatives with our best performing model reaching Accuracy and F1-score up to 91.25% and 91.06% respectively.
Abstract:The present study explores the use of clustering techniques for the design and implementation of a demand response (DR) program for commercial and residential prosumers. The goal of the program is to shift the participants' consumption behavior to mitigate two issues a) the reverse power flow at the primary substation, that occurs when generation from solar panels in the local grid exceeds consumption and b) the system wide peak demand, that typically occurs during hours of the late afternoon. For the clustering stage, three popular algorithms for electrical load clustering are employed -- namely k-means, k-medoids and a hierarchical clustering algorithm -- alongside two different distance metrics -- namely euclidean and constrained Dynamic Time Warping (DTW). We evaluate the methods using different validation metrics including a novel metric -- namely peak performance score (PPS) -- that we propose in the context of this study. The best setup is employed to divide daily prosumer load profiles into clusters and each cluster is analyzed in terms of load shape, mean entropy and distribution of load profiles from each load type. These characteristics are then used to distinguish the clusters that would be most likely to aid with the DR schemes would fit each cluster. Finally, we conceptualize a DR system that combines forecasting, clustering and a price-based demand projection engine to produce daily individualized DR recommendations and pricing policies for prosumers participating in the program. The results of this study can be useful for network operators and utilities that aim to develop targeted DR programs for groups of prosumers within flexible energy communities.
Abstract:Short-term load forecasting (STLF) is vital for the daily operation of power grids. However, the non-linearity, non-stationarity, and randomness characterizing electricity demand time series renders STLF a challenging task. To that end, different forecasting methods have been proposed in the literature for day-ahead load forecasting, including a variety of deep learning models that are currently considered to achieve state-of-the-art performance. In order to compare the accuracy of such models, we focus on national net aggregated STLF and examine well-established autoregressive neural networks of indicative architectures, namely multi-layer perceptrons, N-BEATS, long short-term memory neural networks, and temporal convolutional networks, for the case of Portugal. To investigate the factors that affect the performance of each model and identify the most appropriate per case, we also conduct a post-hoc analysis, correlating forecast errors with key calendar and weather features. Our results indicate that N-BEATS consistently outperforms the rest of the examined deep learning models. Additionally, we find that external factors can significantly impact accuracy, affecting both the actual and relative performance of the models.
Abstract:Alzheimer's dementia (AD) affects memory, thinking, and language, deteriorating person's life. An early diagnosis is very important as it enables the person to receive medical help and ensure quality of life. Therefore, leveraging spontaneous speech in conjunction with machine learning methods for recognizing AD patients has emerged into a hot topic. Most of the previous works employ Convolutional Neural Networks (CNNs), to process the input signal. However, finding a CNN architecture is a time-consuming process and requires domain expertise. Moreover, the researchers introduce early and late fusion approaches for fusing different modalities or concatenate the representations of the different modalities during training, thus the inter-modal interactions are not captured. To tackle these limitations, first we exploit a Neural Architecture Search (NAS) method to automatically find a high performing CNN architecture. Next, we exploit several fusion methods, including Multimodal Factorized Bilinear Pooling and Tucker Decomposition, to combine both speech and text modalities. To the best of our knowledge, there is no prior work exploiting a NAS approach and these fusion methods in the task of dementia detection from spontaneous speech. We perform extensive experiments on the ADReSS Challenge dataset and show the effectiveness of our approach over state-of-the-art methods.