Abstract:Road pavement detection and segmentation are critical for developing autonomous road repair systems. However, developing an instance segmentation method that simultaneously performs multi-class defect detection and segmentation is challenging due to the textural simplicity of road pavement image, the diversity of defect geometries, and the morphological ambiguity between classes. We propose a novel end-to-end method for multi-class road defect detection and segmentation. The proposed method comprises multiple spatial and channel-wise attention blocks available to learn global representations across spatial and channel-wise dimensions. Through these attention blocks, more globally generalised representations of morphological information (spatial characteristics) of road defects and colour and depth information of images can be learned. To demonstrate the effectiveness of our framework, we conducted various ablation studies and comparisons with prior methods on a newly collected dataset annotated with nine road defect classes. The experiments show that our proposed method outperforms existing state-of-the-art methods for multi-class road defect detection and segmentation methods.
Abstract:Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road defects can be categorised in various ways depending on the input data types or training methodologies. The predominant approach involves image-based methods, which analyse pixel intensities and surface textures to identify defects. Despite their popularity, image-based methods share the distinct limitation of vulnerability to weather and lighting changes. To address this issue, researchers have explored the use of additional sensors, such as laser scanners or LiDARs, providing explicit depth information to enable the detection of defects in terms of scale and volume. However, the exploration of data beyond images has not been sufficiently investigated. In this survey paper, we provide a comprehensive review of road surface defect detection studies, categorising them based on input data types and methodologies used. Additionally, we review recently proposed non-image-based methods and discuss several challenges and open problems associated with these techniques.
Abstract:The primary obstacle to developing technologies for low-resource languages is the lack of representative, usable data. In this paper, we report the deployment of technology-driven data collection methods for creating a corpus of more than 60,000 translations from Hindi to Gondi, a low-resource vulnerable language spoken by around 2.3 million tribal people in south and central India. During this process, we help expand information access in Gondi across 2 different dimensions (a) The creation of linguistic resources that can be used by the community, such as a dictionary, children's stories, Gondi translations from multiple sources and an Interactive Voice Response (IVR) based mass awareness platform; (b) Enabling its use in the digital domain by developing a Hindi-Gondi machine translation model, which is compressed by nearly 4 times to enable it's edge deployment on low-resource edge devices and in areas of little to no internet connectivity. We also present preliminary evaluations of utilizing the developed machine translation model to provide assistance to volunteers who are involved in collecting more data for the target language. Through these interventions, we not only created a refined and evaluated corpus of 26,240 Hindi-Gondi translations that was used for building the translation model but also engaged nearly 850 community members who can help take Gondi onto the internet.
Abstract:The primary obstacle to developing technologies for low-resource languages is the lack of usable data. In this paper, we report the adoption and deployment of 4 technology-driven methods of data collection for Gondi, a low-resource vulnerable language spoken by around 2.3 million tribal people in south and central India. In the process of data collection, we also help in its revival by expanding access to information in Gondi through the creation of linguistic resources that can be used by the community, such as a dictionary, children's stories, an app with Gondi content from multiple sources and an Interactive Voice Response (IVR) based mass awareness platform. At the end of these interventions, we collected a little less than 12,000 translated words and/or sentences and identified more than 650 community members whose help can be solicited for future translation efforts. The larger goal of the project is collecting enough data in Gondi to build and deploy viable language technologies like machine translation and speech to text systems that can help take the language onto the internet.