Abstract:Machine learning ensembles combine multiple base models to produce a more accurate output. They can be applied to a range of machine learning problems, including anomaly detection. In this paper, we investigate how to maximize the composability and scalability of an FPGA-based streaming ensemble anomaly detector (fSEAD). To achieve this, we propose a flexible computing architecture consisting of multiple partially reconfigurable regions, pblocks, which each implement anomaly detectors. Our proof-of-concept design supports three state-of-the-art anomaly detection algorithms: Loda, RS-Hash and xStream. Each algorithm is scalable, meaning multiple instances can be placed within a pblock to improve performance. Moreover, fSEAD is implemented using High-level synthesis (HLS), meaning further custom anomaly detectors can be supported. Pblocks are interconnected via an AXI-switch, enabling them to be composed in an arbitrary fashion before combining and merging results at run-time to create an ensemble that maximizes the use of FPGA resources and accuracy. Through utilizing reconfigurable Dynamic Function eXchange (DFX), the detector can be modified at run-time to adapt to changing environmental conditions. We compare fSEAD to an equivalent central processing unit (CPU) implementation using four standard datasets, with speed-ups ranging from $3\times$ to $8\times$.
Abstract:FPGAs have distinct advantages as a technology for deploying deep neural networks (DNNs) at the edge. Lookup Table (LUT) based networks, where neurons are directly modelled using LUTs, help maximize this promise of offering ultra-low latency and high area efficiency on FPGAs. Unfortunately, LUT resource usage scales exponentially with the number of inputs to the LUT, restricting PolyLUT to small LUT sizes. This work introduces PolyLUT-Add, a technique that enhances neuron connectivity by combining $A$ PolyLUT sub-neurons via addition to improve accuracy. Moreover, we describe a novel architecture to improve its scalability. We evaluated our implementation over the MNIST, Jet Substructure classification and Network Intrusion Detection benchmark and found that for similar accuracy, PolyLUT-Add achieves a LUT reduction of $1.3-7.7\times$ with a $1.2-2.2\times$ decrease in latency.
Abstract:Binarized neural networks (BNNs) have shown exciting potential for utilising neural networks in embedded implementations where area, energy and latency constraints are paramount. With BNNs, multiply-accumulate (MAC) operations can be simplified to XnorPopcount operations, leading to massive reductions in both memory and computation resources. Furthermore, multiple efficient implementations of BNNs have been reported on field-programmable gate array (FPGA) implementations. This paper proposes a smaller, faster, more energy-efficient approximate replacement for the XnorPopcountoperation, called XNorMaj, inspired by state-of-the-art FPGAlook-up table schemes which benefit FPGA implementations. Weshow that XNorMaj is up to 2x more resource-efficient than the XnorPopcount operation. While the XNorMaj operation has a minor detrimental impact on accuracy, the resource savings enable us to use larger networks to recover the loss.
Abstract:Low-precision arithmetic operations to accelerate deep-learning applications on field-programmable gate arrays (FPGAs) have been studied extensively, because they offer the potential to save silicon area or increase throughput. However, these benefits come at the cost of a decrease in accuracy. In this article, we demonstrate that reconfigurable constant coefficient multipliers (RCCMs) offer a better alternative for saving the silicon area than utilizing low-precision arithmetic. RCCMs multiply input values by a restricted choice of coefficients using only adders, subtractors, bit shifts, and multiplexers (MUXes), meaning that they can be heavily optimized for FPGAs. We propose a family of RCCMs tailored to FPGA logic elements to ensure their efficient utilization. To minimize information loss from quantization, we then develop novel training techniques that map the possible coefficient representations of the RCCMs to neural network weight parameter distributions. This enables the usage of the RCCMs in hardware, while maintaining high accuracy. We demonstrate the benefits of these techniques using AlexNet, ResNet-18, and ResNet-50 networks. The resulting implementations achieve up to 50% resource savings over traditional 8-bit quantized networks, translating to significant speedups and power savings. Our RCCM with the lowest resource requirements exceeds 6-bit fixed point accuracy, while all other implementations with RCCMs achieve at least similar accuracy to an 8-bit uniformly quantized design, while achieving significant resource savings.
Abstract:The computational complexity of neural networks for large scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This paper demonstrates, for the case where the neural network architecture and ternary weight values are known a priori, that extremely high throughput implementations of neural network inference can be made by customising the datapath and routing to remove unnecessary computations and data movement. This approach is ideally suited to FPGA implementations as a specialized implementation of a trained network improves efficiency while still retaining generality with the reconfigurability of an FPGA. A VGG style network with ternary weights and fixed point activations is implemented for the CIFAR10 dataset on Amazon's AWS F1 instance. This paper demonstrates how to remove 90% of the operations in convolutional layers by exploiting sparsity and compile-time optimizations. The implementation in hardware achieves 90.9 +/- 0.1% accuracy and 122 k frames per second, with a latency of only 29 us, which is the fastest CNN inference implementation reported so far on an FPGA.