Abstract:Diffusion Large Language Models (dLLMs) introduce iterative denoising to enable parallel token generation, but their sampling phase displays fundamentally different characteristics compared to GEMM-centric transformer layers. Profiling on modern GPUs reveals that sampling can account for up to 70% of total model inference latency-primarily due to substantial memory loads and writes from vocabulary-wide logits, reduction-based token selection, and iterative masked updates. These processes demand large on-chip SRAM and involve irregular memory accesses that conventional NPUs struggle to handle efficiently. To address this, we identify a set of critical instructions that an NPU architecture must specifically optimize for dLLM sampling. Our design employs lightweight non-GEMM vector primitives, in-place memory reuse strategies, and a decoupled mixed-precision memory hierarchy. Together, these optimizations deliver up to a 2.53x speedup over the NVIDIA RTX A6000 GPU under an equivalent nm technology node. We also open-source our cycle-accurate simulation and post-synthesis RTL verification code, confirming functional equivalence with current dLLM PyTorch implementations.
Abstract:Deploying deep neural networks (DNNs) on resource-constrained edge devices such as FPGAs requires a careful balance among latency, power, and hardware resource usage, while maintaining high accuracy. Existing Lookup Table (LUT)-based DNNs -- such as LogicNets, PolyLUT, and NeuraLUT -- face two critical challenges: the exponential growth of LUT size and inefficient random sparse connectivity. This paper presents SparseLUT, a comprehensive framework that addresses these challenges through two orthogonal optimizations. First, we propose an architectural enhancement that aggregates multiple PolyLUT sub-neurons via an adder, significantly reducing LUT consumption by 2.0x-13.9x and lowering inference latency by 1.2x-1.6x, all while maintaining comparable accuracy. Building upon this foundation, we further introduce a non-greedy training algorithm that optimizes neuron connectivity by selectively pruning less significant inputs and strategically regrowing more effective ones. This training optimization, which incurs no additional area and latency overhead, delivers consistent accuracy improvements across benchmarks -- achieving up to a 2.13% gain on MNIST and 0.94% on Jet Substructure Classification compared to existing LUT-DNN approaches.




Abstract:The deployment of deep neural networks (DNNs) on resource-constrained edge devices such as field-programmable gate arrays (FPGAs) requires a careful balance of latency, power, and resource usage while maintaining high accuracy. Existing Lookup Table (LUT)-based DNNs, including LogicNets, PolyLUT, PolyLUT-Add, and NeuraLUT, exploit native FPGA resources with random sparse connectivity. This paper introduces SparseLUT, a connectivity-centric training technique tailored for LUT-based DNNs. SparseLUT leverages a non-greedy training strategy that prioritizes the pruning of less significant connections and strategically regrows alternative ones, resulting in efficient convergence to the target sparsity. Experimental results show consistent accuracy improvements across benchmarks, including up to a 2.13\% increase on MNIST and a 0.94\% improvement for Jet Substructure Classification compared to random sparsity. This is done without any hardware overhead and achieves state-of-the-art results for LUT-based DNNs.




Abstract:Machine learning ensembles combine multiple base models to produce a more accurate output. They can be applied to a range of machine learning problems, including anomaly detection. In this paper, we investigate how to maximize the composability and scalability of an FPGA-based streaming ensemble anomaly detector (fSEAD). To achieve this, we propose a flexible computing architecture consisting of multiple partially reconfigurable regions, pblocks, which each implement anomaly detectors. Our proof-of-concept design supports three state-of-the-art anomaly detection algorithms: Loda, RS-Hash and xStream. Each algorithm is scalable, meaning multiple instances can be placed within a pblock to improve performance. Moreover, fSEAD is implemented using High-level synthesis (HLS), meaning further custom anomaly detectors can be supported. Pblocks are interconnected via an AXI-switch, enabling them to be composed in an arbitrary fashion before combining and merging results at run-time to create an ensemble that maximizes the use of FPGA resources and accuracy. Through utilizing reconfigurable Dynamic Function eXchange (DFX), the detector can be modified at run-time to adapt to changing environmental conditions. We compare fSEAD to an equivalent central processing unit (CPU) implementation using four standard datasets, with speed-ups ranging from $3\times$ to $8\times$.




Abstract:FPGAs have distinct advantages as a technology for deploying deep neural networks (DNNs) at the edge. Lookup Table (LUT) based networks, where neurons are directly modelled using LUTs, help maximize this promise of offering ultra-low latency and high area efficiency on FPGAs. Unfortunately, LUT resource usage scales exponentially with the number of inputs to the LUT, restricting PolyLUT to small LUT sizes. This work introduces PolyLUT-Add, a technique that enhances neuron connectivity by combining $A$ PolyLUT sub-neurons via addition to improve accuracy. Moreover, we describe a novel architecture to improve its scalability. We evaluated our implementation over the MNIST, Jet Substructure classification and Network Intrusion Detection benchmark and found that for similar accuracy, PolyLUT-Add achieves a LUT reduction of $1.3-7.7\times$ with a $1.2-2.2\times$ decrease in latency.