Abstract:Continuous prompts, or "soft prompts", are a widely-adopted parameter-efficient tuning strategy for large language models, but are often less favorable due to their opaque nature. Prior attempts to interpret continuous prompts relied on projecting individual prompt tokens onto the vocabulary space. However, this approach is problematic as performant prompts can yield arbitrary or contradictory text, and it interprets prompt tokens individually. In this work, we propose a new approach to interpret continuous prompts that elicits textual descriptions from their representations during model inference. Using a Patchscopes variant (Ghandeharioun et al., 2024) called InSPEcT over various tasks, we show our method often yields accurate task descriptions which become more faithful as task performance increases. Moreover, an elaborated version of InSPEcT reveals biased features in continuous prompts, whose presence correlates with biased model predictions. Providing an effective interpretability solution, InSPEcT can be leveraged to debug unwanted properties in continuous prompts and inform developers on ways to mitigate them.
Abstract:Large language models (LLMs) can solve complex multi-step problems, but little is known about how these computations are implemented internally. Motivated by this, we study how LLMs answer multi-hop queries such as "The spouse of the performer of Imagine is". These queries require two information extraction steps: a latent one for resolving the first hop ("the performer of Imagine") into the bridge entity (John Lennon), and one for resolving the second hop ("the spouse of John Lennon") into the target entity (Yoko Ono). Understanding how the latent step is computed internally is key to understanding the overall computation. By carefully analyzing the internal computations of transformer-based LLMs, we discover that the bridge entity is resolved in the early layers of the model. Then, only after this resolution, the two-hop query is solved in the later layers. Because the second hop commences in later layers, there could be cases where these layers no longer encode the necessary knowledge for correctly predicting the answer. Motivated by this, we propose a novel "back-patching" analysis method whereby a hidden representation from a later layer is patched back to an earlier layer. We find that in up to 57% of previously incorrect cases there exists a back-patch that results in the correct generation of the answer, showing that the later layers indeed sometimes lack the needed functionality. Overall our methods and findings open further opportunities for understanding and improving latent reasoning in transformer-based LLMs.
Abstract:To evaluate knowledge in large language models (LLMs), current methods query the model and then evaluate its generated responses. In this work, we ask whether evaluation can be done $\textit{before}$ the model has generated any text. Concretely, is it possible to estimate how knowledgeable a model is about a certain entity, only from its internal computation? We study this question with two tasks: given a subject entity, the goal is to predict (a) the ability of the model to answer common questions about the entity, and (b) the factuality of responses generated by the model about the entity. Experiments with a variety of LLMs show that KEEN, a simple probe trained over internal subject representations, succeeds at both tasks - strongly correlating with both the QA accuracy of the model per-subject and FActScore, a recent factuality metric in open-ended generation. Moreover, KEEN naturally aligns with the model's hedging behavior and faithfully reflects changes in the model's knowledge after fine-tuning. Lastly, we show a more interpretable yet equally performant variant of KEEN, which highlights a small set of tokens that correlates with the model's lack of knowledge. Being simple and lightweight, KEEN can be leveraged to identify gaps and clusters of entity knowledge in LLMs, and guide decisions such as augmenting queries with retrieval.