Abstract:Text-to-image diffusion models (T2I) use a latent representation of a text prompt to guide the image generation process. However, the process by which the encoder produces the text representation is unknown. We propose the Diffusion Lens, a method for analyzing the text encoder of T2I models by generating images from its intermediate representations. Using the Diffusion Lens, we perform an extensive analysis of two recent T2I models. Exploring compound prompts, we find that complex scenes describing multiple objects are composed progressively and more slowly compared to simple scenes; Exploring knowledge retrieval, we find that representation of uncommon concepts requires further computation compared to common concepts, and that knowledge retrieval is gradual across layers. Overall, our findings provide valuable insights into the text encoder component in T2I pipelines.
Abstract:Text-to-image models are trained on extensive amounts of data, leading them to implicitly encode factual knowledge within their parameters. While some facts are useful, others may be incorrect or become outdated (e.g., the current President of the United States). We introduce ReFACT, a novel approach for editing factual knowledge in text-to-image generative models. ReFACT updates the weights of a specific layer in the text encoder, only modifying a tiny portion of the model's parameters, and leaving the rest of the model unaffected. We empirically evaluate ReFACT on an existing benchmark, alongside RoAD, a newly curated dataset. ReFACT achieves superior performance in terms of generalization to related concepts while preserving unrelated concepts. Furthermore, ReFACT maintains image generation quality, making it a valuable tool for updating and correcting factual information in text-to-image models.