University of Electronic Science and Technology of China
Abstract:Remaining Useful Life (RUL) estimation plays a critical role in Prognostics and Health Management (PHM). Traditional machine health maintenance systems are often costly, requiring sufficient prior expertise, and are difficult to fit into highly complex and changing industrial scenarios. With the widespread deployment of sensors on industrial equipment, building the Industrial Internet of Things (IIoT) to interconnect these devices has become an inexorable trend in the development of the digital factory. Using the device's real-time operational data collected by IIoT to get the estimated RUL through the RUL prediction algorithm, the PHM system can develop proactive maintenance measures for the device, thus, reducing maintenance costs and decreasing failure times during operation. This paper carries out research into the remaining useful life prediction model for multi-sensor devices in the IIoT scenario. We investigated the mainstream RUL prediction models and summarized the basic steps of RUL prediction modeling in this scenario. On this basis, a data-driven approach for RUL estimation is proposed in this paper. It employs a Multi-Head Attention Mechanism to fuse the multi-dimensional time-series data output from multiple sensors, in which the attention on features is used to capture the interactions between features and attention on sequences is used to learn the weights of time steps. Then, the Long Short-Term Memory Network is applied to learn the features of time series. We evaluate the proposed model on two benchmark datasets (C-MAPSS and PHM08), and the results demonstrate that it outperforms the state-of-art models. Moreover, through the interpretability of the multi-head attention mechanism, the proposed model can provide a preliminary explanation of engine degradation. Therefore, this approach is promising for predictive maintenance in IIoT scenarios.
Abstract:As an important technology to ensure data security, consistency, traceability, etc., blockchain has been increasingly used in Internet of Things (IoT) applications. The integration of blockchain and edge computing can further improve the resource utilization in terms of network, computing, storage, and security. This paper aims to present a survey on the integration of blockchain and edge computing. In particular, we first give an overview of blockchain and edge computing. We then present a general architecture of an integration of blockchain and edge computing system. We next study how to utilize blockchain to benefit edge computing, as well as how to use edge computing to benefit blockchain. We also discuss the issues brought by the integration of blockchain and edge computing system and solutions from perspectives of resource management, joint optimization, data management, computation offloading and security mechanism. Finally, we analyze and summarize the existing challenges posed by the integration of blockchain and edge computing system and the potential solutions in the future.
Abstract:Internet of Medical Things (IoMT) can connect many medical imaging equipments to the medical information network to facilitate the process of diagnosing and treating for doctors. As medical image contains sensitive information, it is of importance yet very challenging to safeguard the privacy or security of the patient. In this work, a deep learning based encryption and decryption network (DeepEDN) is proposed to fulfill the process of encrypting and decrypting the medical image. Specifically, in DeepEDN, the Cycle-Generative Adversarial Network (Cycle-GAN) is employed as the main learning network to transfer the medical image from its original domain into the target domain. Target domain is regarded as a "Hidden Factors" to guide the learning model for realizing the encryption. The encrypted image is restored to the original (plaintext) image through a reconstruction network to achieve an image decryption. In order to facilitate the data mining directly from the privacy-protected environment, a region of interest(ROI)-mining-network is proposed to extract the interested object from the encrypted image. The proposed DeepEDN is evaluated on the chest X-ray dataset. Extensive experimental results and security analysis show that the proposed method can achieve a high level of security with a good performance in efficiency.