Abstract:In this paper, a novel switching pushing skill algorithm is proposed to improve the efficiency of planar non-prehensile manipulation, which draws inspiration from human pushing actions and comprises two sub-problems, i.e., discrete decision-making of pushing point and continuous feedback control of pushing action. In order to solve the sub-problems above, a combination of Model Predictive Control (MPC) and Deep Reinforcement Learning (DRL) method is employed. Firstly, the selection of pushing point is modeled as a Markov decision process,and an off-policy DRL method is used by reshaping the reward function to train the decision-making model for selecting pushing point from a pre-constructed set based on the current state. Secondly, a motion constraint region (MCR) is constructed for the specific pushing point based on the distance from the target, followed by utilizing the MPC controller to regulate the motion of the object within the MCR towards the target pose. The trigger condition for switching the pushing point occurs when the object reaches the boundary of the MCR under the pushing action. Subsequently, the pushing point and the controller are updated iteratively until the target pose is reached. We conducted pushing experiments on four distinct object shapes in both simulated and physical environments to evaluate our method. The results indicate that our method achieves a significantly higher training efficiency, with a training time that is only about 20% of the baseline method while maintaining around the same success rate. Moreover, our method outperforms the baseline method in terms of both training and execution efficiency of pushing operations, allowing for rapid learning of robot pushing skills.
Abstract:How to efficiently utilize the temporal features is crucial, yet challenging, for video restoration. The temporal features usually contain various noisy and uncorrelated information, and they may interfere with the restoration of the current frame. This paper proposes learning noise-robust feature representations to help video restoration. We are inspired by that the neural codec is a natural denoiser. In neural codec, the noisy and uncorrelated contents which are hard to predict but cost lots of bits are more inclined to be discarded for bitrate saving. Therefore, we design a neural compression module to filter the noise and keep the most useful information in features for video restoration. To achieve robustness to noise, our compression module adopts a spatial channel-wise quantization mechanism to adaptively determine the quantization step size for each position in the latent. Experiments show that our method can significantly boost the performance on video denoising, where we obtain 0.13 dB improvement over BasicVSR++ with only 0.23x FLOPs. Meanwhile, our method also obtains SOTA results on video deraining and dehazing.
Abstract:In the fine-grained visual classification task, objects usually share similar geometric structure but present different part distribution and variant local features. Therefore, localizing and extracting discriminative local features play a crucial role in obtaining accurate performance. Existing work that first locates specific several object parts and then extracts further local features either require additional location annotation or needs to train multiple independent networks. In this paper. We propose Weakly Supervised Local Attention Network (WS-LAN) to solve the problem, which jointly generates a great many attention maps (region-of-interest maps) to indicate the location of object parts and extract sequential local features by Local Attention Pooling (LAP). Besides, we adopt attention center loss and attention dropout so that each attention map will focus on a unique object part. WS-LAN can be trained end-to-end and achieves the state-of-the-art performance on multiple fine-grained classification datasets, including CUB-200-2011, Stanford Car and FGVC-Aircraft, which demonstrated its effectiveness.