Abstract:This paper presents communication-constrained distributed conformal risk control (CD-CRC) framework, a novel decision-making framework for sensor networks under communication constraints. Targeting multi-label classification problems, such as segmentation, CD-CRC dynamically adjusts local and global thresholds used to identify significant labels with the goal of ensuring a target false negative rate (FNR), while adhering to communication capacity limits. CD-CRC builds on online exponentiated gradient descent to estimate the relative quality of the observations of different sensors, and on online conformal risk control (CRC) as a mechanism to control local and global thresholds. CD-CRC is proved to offer deterministic worst-case performance guarantees in terms of FNR and communication overhead, while the regret performance in terms of false positive rate (FPR) is characterized as a function of the key hyperparameters. Simulation results highlight the effectiveness of CD-CRC, particularly in communication resource-constrained environments, making it a valuable tool for enhancing the performance and reliability of distributed sensor networks.
Abstract:In a membership inference attack (MIA), an attacker exploits the overconfidence exhibited by typical machine learning models to determine whether a specific data point was used to train a target model. In this paper, we analyze the performance of the state-of-the-art likelihood ratio attack (LiRA) within an information-theoretical framework that allows the investigation of the impact of the aleatoric uncertainty in the true data generation process, of the epistemic uncertainty caused by a limited training data set, and of the calibration level of the target model. We compare three different settings, in which the attacker receives decreasingly informative feedback from the target model: confidence vector (CV) disclosure, in which the output probability vector is released; true label confidence (TLC) disclosure, in which only the probability assigned to the true label is made available by the model; and decision set (DS) disclosure, in which an adaptive prediction set is produced as in conformal prediction. We derive bounds on the advantage of an MIA adversary with the aim of offering insights into the impact of uncertainty and calibration on the effectiveness of MIAs. Simulation results demonstrate that the derived analytical bounds predict well the effectiveness of MIAs.
Abstract:The goal of Temporal Action Localization (TAL) is to find the categories and temporal boundaries of actions in an untrimmed video. Most TAL methods rely heavily on action recognition models that are sensitive to action labels rather than temporal boundaries. More importantly, few works consider the background frames that are similar to action frames in pixels but dissimilar in semantics, which also leads to inaccurate temporal boundaries. To address the challenge above, we propose a Boundary-Aware Proposal Generation (BAPG) method with contrastive learning. Specifically, we define the above background frames as hard negative samples. Contrastive learning with hard negative mining is introduced to improve the discrimination of BAPG. BAPG is independent of the existing TAL network architecture, so it can be applied plug-and-play to mainstream TAL models. Extensive experimental results on THUMOS14 and ActivityNet-1.3 demonstrate that BAPG can significantly improve the performance of TAL.
Abstract:Consider a setting in which devices and a server share a pre-trained model. The server wishes to make an inference on a new input given the model. Devices have access to data, previously not used for training, and can communicate to the server over a common wireless channel. If the devices have no access to the new input, can communication from devices to the server enhance the quality of the inference decision at the server? Recent work has introduced federated conformal prediction (CP), which leverages devices-to-server communication to improve the reliability of the server's decision. With federated CP, devices communicate to the server information about the loss accrued by the shared pre-trained model on the local data, and the server leverages this information to calibrate a decision interval, or set, so that it is guaranteed to contain the correct answer with a pre-defined target reliability level. Previous work assumed noise-free communication, whereby devices can communicate a single real number to the server. In this paper, we study for the first time federated CP in a wireless setting. We introduce a novel protocol, termed wireless federated conformal prediction (WFCP), which builds on type-based multiple access (TBMA) and on a novel quantile correction strategy. WFCP is proved to provide formal reliability guarantees in terms of coverage of the predicted set produced by the server. Using numerical results, we demonstrate the significant advantages of WFCP against digital implementations of existing federated CP schemes, especially in regimes with limited communication resources and/or large number of devices.
Abstract:Type-based multiple access (TBMA) is a semantics-aware multiple access protocol for remote inference. In TBMA, codewords are reused across transmitting sensors, with each codeword being assigned to a different observation value. Existing TBMA protocols are based on fixed shared codebooks and on conventional maximum-likelihood or Bayesian decoders, which require knowledge of the distributions of observations and channels. In this letter, we propose a novel design principle for TBMA based on the information bottleneck (IB). In the proposed IB-TBMA protocol, the shared codebook is jointly optimized with a decoder based on artificial neural networks (ANNs), so as to adapt to source, observations, and channel statistics based on data only. We also introduce the Compressed IB-TBMA (CB-TBMA) protocol, which improves IB-TBMA by enabling a reduction in the number of codewords via an IB-inspired clustering phase. Numerical results demonstrate the importance of a joint design of codebook and neural decoder, and validate the benefits of codebook compression.