Abstract:Industrial anomaly detection (IAD) is crucial for automating industrial quality inspection. The diversity of the datasets is the foundation for developing comprehensive IAD algorithms. Existing IAD datasets focus on the diversity of data categories, overlooking the diversity of domains within the same data category. In this paper, to bridge this gap, we propose the Aero-engine Blade Anomaly Detection (AeBAD) dataset, consisting of two sub-datasets: the single-blade dataset and the video anomaly detection dataset of blades. Compared to existing datasets, AeBAD has the following two characteristics: 1.) The target samples are not aligned and at different scales. 2.) There is a domain shift between the distribution of normal samples in the test set and the training set, where the domain shifts are mainly caused by the changes in illumination and view. Based on this dataset, we observe that current state-of-the-art (SOTA) IAD methods exhibit limitations when the domain of normal samples in the test set undergoes a shift. To address this issue, we propose a novel method called masked multi-scale reconstruction (MMR), which enhances the model's capacity to deduce causality among patches in normal samples by a masked reconstruction task. MMR achieves superior performance compared to SOTA methods on the AeBAD dataset. Furthermore, MMR achieves competitive performance with SOTA methods to detect the anomalies of different types on the MVTec AD dataset. Code and dataset are available at https://github.com/zhangzilongc/MMR.
Abstract:Intelligent fault diagnosis has been increasingly improved with the evolution of deep learning (DL) approaches. Recently, the emerging graph neural networks (GNNs) have also been introduced in the field of fault diagnosis with the goal to make better use of the inductive bias of the interdependencies between the different sensor measurements. However, there are some limitations with these GNN-based fault diagnosis methods. First, they lack the ability to realize multiscale feature extraction due to the fixed receptive field of GNNs. Secondly, they eventually encounter the over-smoothing problem with increase of model depth. Lastly, the extracted features of these GNNs are hard to understand owing to the black-box nature of GNNs. To address these issues, a filter-informed spectral graph wavelet network (SGWN) is proposed in this paper. In SGWN, the spectral graph wavelet convolutional (SGWConv) layer is established upon the spectral graph wavelet transform, which can decompose a graph signal into scaling function coefficients and spectral graph wavelet coefficients. With the help of SGWConv, SGWN is able to prevent the over-smoothing problem caused by long-range low-pass filtering, by simultaneously extracting low-pass and band-pass features. Furthermore, to speed up the computation of SGWN, the scaling kernel function and graph wavelet kernel function in SGWConv are approximated by the Chebyshev polynomials. The effectiveness of the proposed SGWN is evaluated on the collected solenoid valve dataset and aero-engine intershaft bearing dataset. The experimental results show that SGWN can outperform the comparative methods in both diagnostic accuracy and the ability to prevent over-smoothing. Moreover, its extracted features are also interpretable with domain knowledge.
Abstract:Aero-engine is the core component of aircraft and other spacecraft. The high-speed rotating blades provide power by sucking in air and fully combusting, and various defects will inevitably occur, threatening the operation safety of aero-engine. Therefore, regular inspections are essential for such a complex system. However, existing traditional technology which is borescope inspection is labor-intensive, time-consuming, and experience-dependent. To endow this technology with intelligence, a novel superpixel perception graph neural network (SPGNN) is proposed by utilizing a multi-stage graph convolutional network (MSGCN) for feature extraction and superpixel perception region proposal network (SPRPN) for region proposal. First, to capture complex and irregular textures, the images are transformed into a series of patches, to obtain their graph representations. Then, MSGCN composed of several GCN blocks extracts graph structure features and performs graph information processing at graph level. Last but not least, the SPRPN is proposed to generate perceptual bounding boxes by fusing graph representation features and superpixel perception features. Therefore, the proposed SPGNN always implements feature extraction and information transmission at the graph level in the whole SPGNN pipeline, and SPRPN and MSGNN mutually benefit from each other. To verify the effectiveness of SPGNN, we meticulously construct a simulated blade dataset with 3000 images. A public aluminum dataset is also used to validate the performances of different methods. The experimental results demonstrate that the proposed SPGNN has superior performance compared with the state-of-the-art methods. The source code will be available at https://github.com/githbshang/SPGNN.
Abstract:With the development of artificial intelligence and deep learning (DL) techniques, rotating machinery intelligent diagnosis has gone through tremendous progress with verified success and the classification accuracies of many DL-based intelligent diagnosis algorithms are tending to 100\%. However, different datasets, configurations, and hyper-parameters are often recommended to be used in performance verification for different types of models, and few open source codes are made public for evaluation and comparisons. Therefore, unfair comparisons and ineffective improvement may exist in rotating machinery intelligent diagnosis, which limits the advancement of this field. To address these issues, we perform an extensive evaluation of four kinds of models with various datasets to provide a benchmark study within the same framework. In this paper, we first gather most of the publicly available datasets and give the complete benchmark study of DL-based intelligent algorithms under two data split strategies, five input formats, three normalization methods, and four augmentation methods. Second, we integrate the whole evaluation codes into a code library and release this code library to the public for better development of this field. Third, we use the specific-designed cases to point out the existing issues, including class imbalance, generalization ability, interpretability, few-shot learning, and model selection. By these works, we release a unified code framework for comparing and testing models fairly and quickly, emphasize the importance of open source codes, provide the baseline accuracy (a lower bound) to avoid useless improvement, and discuss potential future directions in this field. The code library is available at \url{https://github.com/ZhaoZhibin/DL-based-Intelligent-Diagnosis-Benchmark}.
Abstract:Recent progress on intelligent fault diagnosis has greatly depended on the deep learning and plenty of labeled data. However, the machine often operates with various working conditions or the target task has different distributions with the collected data used for training (we called the domain shift problem). This leads to the deep transfer learning based (DTL-based) intelligent fault diagnosis which attempts to remit this domain shift problem. Besides, the newly collected testing data are usually unlabeled, which results in the subclass DTL-based methods called unsupervised deep transfer learning based (UDTL-based) intelligent fault diagnosis. Although it has achieved huge development in the field of fault diagnosis, a standard and open source code framework and a comparative study for UDTL-based intelligent fault diagnosis are not yet established. In this paper, commonly used UDTL-based algorithms in intelligent fault diagnosis are integrated into a unified testing framework and the framework is tested on five datasets. Extensive experiments are performed to provide a systematically comparative analysis and the benchmark accuracy for more comparable and meaningful further studies. To emphasize the importance and reproducibility of UDTL-based intelligent fault diagnosis, the testing framework with source codes will be released to the research community to facilitate future research. Finally, comparative analysis of results also reveals some open and essential issues in DTL for intelligent fault diagnosis which are rarely studied including transferability of features, influence of backbones, negative transfer, and physical priors. In summary, the released framework and comparative study can serve as an extended interface and the benchmark results to carry out new studies on UDTL-based intelligent fault diagnosis. The code framework is available at https://github.com/ZhaoZhibin/UDTL.
Abstract:Convolutional neural network (CNN), with ability of feature learning and nonlinear mapping, has demonstrated its effectiveness in prognostics and health management (PHM). However, explanation on the physical meaning of a CNN architecture has rarely been studied. In this paper, a novel wavelet driven deep neural network termed as WaveletKernelNet (WKN) is presented, where a continuous wavelet convolutional (CWConv) layer is designed to replace the first convolutional layer of the standard CNN. This enables the first CWConv layer to discover more meaningful filters. Furthermore, only the scale parameter and translation parameter are directly learned from raw data at this CWConv layer. This provides a very effective way to obtain a customized filter bank, specifically tuned for extracting defect-related impact component embedded in the vibration signal. In addition, three experimental verification using data from laboratory environment are carried out to verify effectiveness of the proposed method for mechanical fault diagnosis. The results show the importance of the designed CWConv layer and the output of CWConv layer is interpretable. Besides, it is found that WKN has fewer parameters, higher fault classification accuracy and faster convergence speed than standard CNN.