The University of Texas at Arlington
Abstract:Well-annotated medical datasets enable deep neural networks (DNNs) to gain strong power in extracting lesion-related features. Building such large and well-designed medical datasets is costly due to the need for high-level expertise. Model pre-training based on ImageNet is a common practice to gain better generalization when the data amount is limited. However, it suffers from the domain gap between natural and medical images. In this work, we pre-train DNNs on ultrasound (US) domains instead of ImageNet to reduce the domain gap in medical US applications. To learn US image representations based on unlabeled US videos, we propose a novel meta-learning-based contrastive learning method, namely Meta Ultrasound Contrastive Learning (Meta-USCL). To tackle the key challenge of obtaining semantically consistent sample pairs for contrastive learning, we present a positive pair generation module along with an automatic sample weighting module based on meta-learning. Experimental results on multiple computer-aided diagnosis (CAD) problems, including pneumonia detection, breast cancer classification, and breast tumor segmentation, show that the proposed self-supervised method reaches state-of-the-art (SOTA). The codes are available at https://github.com/Schuture/Meta-USCL.
Abstract:Local Linear embedding (LLE) is a popular dimension reduction method. In this paper, we first show LLE with nonnegative constraint is equivalent to the widely used Laplacian embedding. We further propose to iterate the two steps in LLE repeatedly to improve the results. Thirdly, we relax the kNN constraint of LLE and present a sparse similarity learning algorithm. The final Iterative LLE combines these three improvements. Extensive experiment results show that iterative LLE algorithm significantly improve both classification and clustering results.