Abstract:In this paper, we propose a new framework for online 3D scene perception. Conventional 3D scene perception methods are offline, i.e., take an already reconstructed 3D scene geometry as input, which is not applicable in robotic applications where the input data is streaming RGB-D videos rather than a complete 3D scene reconstructed from pre-collected RGB-D videos. To deal with online 3D scene perception tasks where data collection and perception should be performed simultaneously, the model should be able to process 3D scenes frame by frame and make use of the temporal information. To this end, we propose an adapter-based plug-and-play module for the backbone of 3D scene perception model, which constructs memory to cache and aggregate the extracted RGB-D features to empower offline models with temporal learning ability. Specifically, we propose a queued memory mechanism to cache the supporting point cloud and image features. Then we devise aggregation modules which directly perform on the memory and pass temporal information to current frame. We further propose 3D-to-2D adapter to enhance image features with strong global context. Our adapters can be easily inserted into mainstream offline architectures of different tasks and significantly boost their performance on online tasks. Extensive experiments on ScanNet and SceneNN datasets demonstrate our approach achieves leading performance on three 3D scene perception tasks compared with state-of-the-art online methods by simply finetuning existing offline models, without any model and task-specific designs. \href{https://xuxw98.github.io/Online3D/}{Project page}.
Abstract:In this paper, we propose a novel network framework for indoor 3D object detection to handle variable input frame numbers in practical scenarios. Existing methods only consider fixed frames of input data for a single detector, such as monocular RGB-D images or point clouds reconstructed from dense multi-view RGB-D images. While in practical application scenes such as robot navigation and manipulation, the raw input to the 3D detectors is the RGB-D images with variable frame numbers instead of the reconstructed scene point cloud. However, the previous approaches can only handle fixed frame input data and have poor performance with variable frame input. In order to facilitate 3D object detection methods suitable for practical tasks, we present a novel 3D detection framework named AnyView for our practical applications, which generalizes well across different numbers of input frames with a single model. To be specific, we propose a geometric learner to mine the local geometric features of each input RGB-D image frame and implement local-global feature interaction through a designed spatial mixture module. Meanwhile, we further utilize a dynamic token strategy to adaptively adjust the number of extracted features for each frame, which ensures consistent global feature density and further enhances the generalization after fusion. Extensive experiments on the ScanNet dataset show our method achieves both great generalizability and high detection accuracy with a simple and clean architecture containing a similar amount of parameters with the baselines.