Abstract:Audio deepfake detection is crucial to combat the malicious use of AI-synthesized speech. Among many efforts undertaken by the community, the ASVspoof challenge has become one of the benchmarks to evaluate the generalizability and robustness of detection models. In this paper, we present Reality Defender's submission to the ASVspoof5 challenge, highlighting a novel pretraining strategy which significantly improves generalizability while maintaining low computational cost during training. Our system SLIM learns the style-linguistics dependency embeddings from various types of bonafide speech using self-supervised contrastive learning. The learned embeddings help to discriminate spoof from bonafide speech by focusing on the relationship between the style and linguistics aspects. We evaluated our system on ASVspoof5, ASV2019, and In-the-wild. Our submission achieved minDCF of 0.1499 and EER of 5.5% on ASVspoof5 Track 1, and EER of 7.4% and 10.8% on ASV2019 and In-the-wild respectively.
Abstract:Vision transformers (ViT) have made substantial progress for classification tasks in computer vision. Recently, Gong et. al. '21, introduced attention-based modeling for several audio tasks. However, relatively unexplored is the use of a ViT for audio spoof detection task. We bridge this gap and introduce ViTs for this task. A vanilla baseline built on fine-tuning the SSAST (Gong et. al. '22) audio ViT model achieves sub-optimal equal error rates (EERs). To improve performance, we propose a novel attention-based contrastive learning framework (SSAST-CL) that uses cross-attention to aid the representation learning. Experiments show that our framework successfully disentangles the bonafide and spoof classes and helps learn better classifiers for the task. With appropriate data augmentations policy, a model trained on our framework achieves competitive performance on the ASVSpoof 2021 challenge. We provide comparisons and ablation studies to justify our claim.