Abstract:Sparse-view CT reconstruction, aimed at reducing X-ray radiation risks, frequently suffers from image quality degradation, manifested as noise and artifacts. Existing post-processing and dual-domain techniques, although effective in radiation reduction, often lead to over-smoothed results, compromising diagnostic clarity. Addressing this, we introduce TD-Net, a pioneering tri-domain approach that unifies sinogram, image, and frequency domain optimizations. By incorporating Frequency Supervision Module(FSM), TD-Net adeptly preserves intricate details, overcoming the prevalent over-smoothing issue. Extensive evaluations demonstrate TD-Net's superior performance in reconstructing high-quality CT images from sparse views, efficiently balancing radiation safety and image fidelity. The enhanced capabilities of TD-Net in varied noise scenarios highlight its potential as a breakthrough in medical imaging.
Abstract:Computed Tomography (CT) with its remarkable capability for three-dimensional imaging from multiple projections, enjoys a broad range of applications in clinical diagnosis, scientific observation, and industrial detection. Neural Adaptive Tomography (NeAT) is a recently proposed 3D rendering method based on neural radiance field for CT, and it demonstrates superior performance compared to traditional methods. However, it still faces challenges when dealing with the substantial perturbations and pose shifts encountered in CT scanning processes. Here, we propose a neural rendering method for CT reconstruction, named Iterative Neural Adaptive Tomography (INeAT), which incorporates iterative posture optimization to effectively counteract the influence of posture perturbations in data, particularly in cases involving significant posture variations. Through the implementation of a posture feedback optimization strategy, INeAT iteratively refines the posture corresponding to the input images based on the reconstructed 3D volume. We demonstrate that INeAT achieves artifact-suppressed and resolution-enhanced reconstruction in scenarios with significant pose disturbances. Furthermore, we show that our INeAT maintains comparable reconstruction performance to stable-state acquisitions even using data from unstable-state acquisitions, which significantly reduces the time required for CT scanning and relaxes the stringent requirements on imaging hardware systems, underscoring its immense potential for applications in short-time and low-cost CT technology.
Abstract:Light-field fluorescence microscopy (LFM) is a powerful elegant compact method for long-term high-speed imaging of complex biological systems, such as neuron activities and rapid movements of organelles. LFM experiments typically generate terabytes image data and require a huge number of storage space. Some lossy compression algorithms have been proposed recently with good compression performance. However, since the specimen usually only tolerates low power density illumination for long-term imaging with low phototoxicity, the image signal-to-noise ratio (SNR) is relative-ly low, which will cause the loss of some efficient position or intensity information by using such lossy compression al-gorithms. Here, we propose a phase-space continuity enhanced bzip2 (PC-bzip2) lossless compression method for LFM data as a high efficiency and open-source tool, which combines GPU-based fast entropy judgement and multi-core-CPU-based high-speed lossless compression. Our proposed method achieves almost 10% compression ratio improvement while keeping the capability of high-speed compression, compared with original bzip2. We evaluated our method on fluorescence beads data and fluorescence staining cells data with different SNRs. Moreover, by introducing the temporal continuity, our method shows the superior compression ratio on time series data of zebrafish blood vessels.