Abstract:Action recognition is an exciting research avenue for artificial intelligence since it may be a game changer in the emerging industrial fields such as robotic visions and automobiles. However, current deep learning faces major challenges for such applications because of the huge computational cost and the inefficient learning. Hence, we develop a novel brain-inspired Spiking Neural Network (SNN) based system titled Spiking Gating Flow (SGF) for online action learning. The developed system consists of multiple SGF units which assembled in a hierarchical manner. A single SGF unit involves three layers: a feature extraction layer, an event-driven layer and a histogram-based training layer. To demonstrate the developed system capabilities, we employ a standard Dynamic Vision Sensor (DVS) gesture classification as a benchmark. The results indicate that we can achieve 87.5% accuracy which is comparable with Deep Learning (DL), but at smaller training/inference data number ratio 1.5:1. And only a single training epoch is required during the learning process. Meanwhile, to the best of our knowledge, this is the highest accuracy among the non-backpropagation algorithm based SNNs. At last, we conclude the few-shot learning paradigm of the developed network: 1) a hierarchical structure-based network design involves human prior knowledge; 2) SNNs for content based global dynamic feature detection.
Abstract:In this article, we propose a sparse spectra graph convolutional network (SSGCNet) for solving Epileptic EEG signal classification problems. The aim is to achieve a lightweight deep learning model without losing model classification accuracy. We propose a weighted neighborhood field graph (WNFG) to represent EEG signals, which reduces the redundant edges between graph nodes. WNFG has lower time complexity and memory usage than the conventional solutions. Using the graph representation, the sequential graph convolutional network is based on a combination of sparse weight pruning technique and the alternating direction method of multipliers (ADMM). Our approach can reduce computation complexity without effect on classification accuracy. We also present convergence results for the proposed approach. The performance of the approach is illustrated in public and clinical-real datasets. Compared with the existing literature, our WNFG of EEG signals achieves up to 10 times of redundant edge reduction, and our approach achieves up to 97 times of model pruning without loss of classification accuracy.