Abstract:Data are crucial in various computer-related fields, including music information retrieval (MIR), an interdisciplinary area bridging computer science and music. This paper introduces CCMusic, an open and diverse database comprising multiple datasets specifically designed for tasks related to Chinese music, highlighting our focus on this culturally rich domain. The database integrates both published and unpublished datasets, with steps taken such as data cleaning, label refinement, and data structure unification to ensure data consistency and create ready-to-use versions. We conduct benchmark evaluations for all datasets using a unified evaluation framework developed specifically for this purpose. This publicly available framework supports both classification and detection tasks, ensuring standardized and reproducible results across all datasets. The database is hosted on HuggingFace and ModelScope, two open and multifunctional data and model hosting platforms, ensuring ease of accessibility and usability.
Abstract:Optical Music Recognition is a field that attempts to extract digital information from images of either the printed music scores or the handwritten music scores. One of the challenges of the Optical Music Recognition task is to transcript the symbols of the camera-captured images into digital music notations. Previous end-to-end model, based on deep learning, was developed as a Convolutional Recurrent Neural Network. However, it does not explore sufficient contextual information from full scales and there is still a large room for improvement. In this paper, we propose an innovative end-to-end framework that combines a block of Residual Recurrent Convolutional Neural Network with a recurrent Encoder-Decoder network to map a sequence of monophonic music symbols corresponding to the notations present in the image. The Residual Recurrent Convolutional block can improve the ability of the model to enrich the context information while the number of parameter will not be increasing. The experiment results were benchmarked against a publicly available dataset called CAMERA-PRIMUS. We evaluate the performances of our model on both the images with ideal conditions and that with non-ideal conditions. The experiments show that our approach surpass the state-of-the-art end-to-end method using Convolutional Recurrent Neural Network.