Abstract:The thesis proposes a generalized charging framework for multiple mobile chargers to maximize the network lifetime and ensure target coverage and connectivity in large scale WRSNs. Moreover, a multi-point charging model is leveraged to enhance charging efficiency, where the MC can charge multiple sensors simultaneously at each charging location. The thesis proposes an effective Decentralized Partially Observable Semi-Markov Decision Process (Dec POSMDP) model that promotes Mobile Chargers (MCs) cooperation and detects optimal charging locations based on realtime network information. Furthermore, the proposal allows reinforcement algorithms to be applied to different networks without requiring extensive retraining. To solve the Dec POSMDP model, the thesis proposes an Asynchronous Multi Agent Reinforcement Learning algorithm (AMAPPO) based on the Proximal Policy Optimization algorithm (PPO).
Abstract:Learning conditional distributions is challenging because the desired outcome is not a single distribution but multiple distributions that correspond to multiple instances of the covariates. We introduce a novel neural entropic optimal transport method designed to effectively learn generative models of conditional distributions, particularly in scenarios characterized by limited sample sizes. Our method relies on the minimax training of two neural networks: a generative network parametrizing the inverse cumulative distribution functions of the conditional distributions and another network parametrizing the conditional Kantorovich potential. To prevent overfitting, we regularize the objective function by penalizing the Lipschitz constant of the network output. Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques. Our implementation can be found at https://github.com/nguyenngocbaocmt02/GENTLE.
Abstract:Graph hypernetworks (GHNs), constructed by combining graph neural networks (GNNs) with hypernetworks (HNs), leverage relational data across various domains such as neural architecture search, molecular property prediction and federated learning. Despite GNNs and HNs being individually successful, we show that GHNs present problems compromising their performance, such as over-smoothing and heterophily. Moreover, we cannot apply GHNs directly to personalized federated learning (PFL) scenarios, where a priori client relation graph may be absent, private, or inaccessible. To mitigate these limitations in the context of PFL, we propose a novel class of HNs, sheaf hypernetworks (SHNs), which combine cellular sheaf theory with HNs to improve parameter sharing for PFL. We thoroughly evaluate SHNs across diverse PFL tasks, including multi-class classification, traffic and weather forecasting. Additionally, we provide a methodology for constructing client relation graphs in scenarios where such graphs are unavailable. We show that SHNs consistently outperform existing PFL solutions in complex non-IID scenarios. While the baselines' performance fluctuates depending on the task, SHNs show improvements of up to 2.7% in accuracy and 5.3% in lower mean squared error over the best-performing baseline.
Abstract:Algorithmic recourse recommends a cost-efficient action to a subject to reverse an unfavorable machine learning classification decision. Most existing methods in the literature generate recourse under the assumption of complete knowledge about the cost function. In real-world practice, subjects could have distinct preferences, leading to incomplete information about the underlying cost function of the subject. This paper proposes a two-step approach integrating preference learning into the recourse generation problem. In the first step, we design a question-answering framework to refine the confidence set of the Mahalanobis matrix cost of the subject sequentially. Then, we generate recourse by utilizing two methods: gradient-based and graph-based cost-adaptive recourse that ensures validity while considering the whole confidence set of the cost matrix. The numerical evaluation demonstrates the benefits of our approach over state-of-the-art baselines in delivering cost-efficient recourse recommendations.
Abstract:Flow matching is a powerful framework for generating high-quality samples in various applications, especially image synthesis. However, the intensive computational demands of these models, especially during the fine-tuning process and sampling processes, pose significant challenges for low-resource scenarios. This paper introduces Bellman Optimal Step-size Straightening (BOSS) technique for distilling flow-matching generative models: it aims specifically for a few-step efficient image sampling while adhering to a computational budget constraint. First, this technique involves a dynamic programming algorithm that optimizes the step sizes of the pretrained network. Then, it refines the velocity network to match the optimal step sizes, aiming to straighten the generation paths. Extensive experimental evaluations across image generation tasks demonstrate the efficacy of BOSS in terms of both resource utilization and image quality. Our results reveal that BOSS achieves substantial gains in efficiency while maintaining competitive sample quality, effectively bridging the gap between low-resource constraints and the demanding requirements of flow-matching generative models. Our paper also fortifies the responsible development of artificial intelligence, offering a more sustainable generative model that reduces computational costs and environmental footprints. Our code can be found at https://github.com/nguyenngocbaocmt02/BOSS.
Abstract:Data is a cornerstone for fine-tuning large language models, yet acquiring suitable data remains challenging. Challenges encompassed data scarcity, linguistic diversity, and domain-specific content. This paper presents lessons learned while crawling and refining data tailored for fine-tuning Vietnamese language models. Crafting such a dataset, while accounting for linguistic intricacies and striking a balance between inclusivity and accuracy, demands meticulous planning. Our paper presents a multidimensional strategy including leveraging existing datasets in the English language and developing customized data-crawling scripts with the assistance of generative AI tools. A fine-tuned LLM model for the Vietnamese language, which was produced using resultant datasets, demonstrated good performance while generating Vietnamese news articles from prompts. The study offers practical solutions and guidance for future fine-tuning models in languages like Vietnamese.
Abstract:This study evaluates the efficacy of ChatGPT as an AI teaching and learning support tool in an integrated circuit systems course at a higher education institution in an Asian country. Various question types were completed, and ChatGPT responses were assessed to gain valuable insights for further investigation. The objective is to assess ChatGPT's ability to provide insights, personalized support, and interactive learning experiences in engineering education. The study includes the evaluation and reflection of different stakeholders: students, lecturers, and engineers. The findings of this study shed light on the benefits and limitations of ChatGPT as an AI tool, paving the way for innovative learning approaches in technical disciplines. Furthermore, the study contributes to our understanding of how digital transformation is likely to unfold in the education sector.
Abstract:Given a (machine learning) classifier and a collection of unlabeled data, how can we efficiently identify misclassification patterns presented in this dataset? To address this problem, we propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm. The recommendation algorithm is conceptualized as a stochastic sampler that, in each round, queries the annotators a subset of samples for their true labels and obtains the feedback information on whether the samples are misclassified. The sampling mechanism needs to balance between discovering new patterns of misclassification (exploration) and confirming the potential patterns of classification (exploitation). We construct a determinantal point process, whose intensity balances the exploration-exploitation trade-off through the weighted update of the posterior at each round to form the generator of the stochastic sampler. The numerical results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
Abstract:Medical segmentation is performed to determine the bounds of regions of interest (ROI) prior to surgery. By allowing the study of growth, structure, and behaviour of the ROI in the planning phase, critical information can be obtained, increasing the likelihood of a successful operation. Usually, segmentations are performed manually or via machine learning methods trained on manual annotations. In contrast, this paper proposes a fully automatic, unsupervised inpainting-based brain tumour segmentation system for T1-weighted MRI. First, a deep convolutional neural network (DCNN) is trained to reconstruct missing healthy brain regions. Then, upon application, anomalous regions are determined by identifying areas of highest reconstruction loss. Finally, superpixel segmentation is performed to segment those regions. We show the proposed system is able to segment various sized and abstract tumours and achieves a mean and standard deviation Dice score of 0.771 and 0.176, respectively.