Abstract:Understanding model performance on unlabeled data is a fundamental challenge of developing, deploying, and maintaining AI systems. Model performance is typically evaluated using test sets or periodic manual quality assessments, both of which require laborious manual data labeling. Automated performance prediction techniques aim to mitigate this burden, but potential inaccuracy and a lack of trust in their predictions has prevented their widespread adoption. We address this core problem of performance prediction uncertainty with a method to compute prediction intervals for model performance. Our methodology uses transfer learning to train an uncertainty model to estimate the uncertainty of model performance predictions. We evaluate our approach across a wide range of drift conditions and show substantial improvement over competitive baselines. We believe this result makes prediction intervals, and performance prediction in general, significantly more practical for real-world use.
Abstract:Building and maintaining high-quality test sets remains a laborious and expensive task. As a result, test sets in the real world are often not properly kept up to date and drift from the production traffic they are supposed to represent. The frequency and severity of this drift raises serious concerns over the value of manually labeled test sets in the QA process. This paper proposes a simple but effective technique that drastically reduces the effort needed to construct and maintain a high-quality test set (reducing labeling effort by 80-100% across a range of practical scenarios). This result encourages a fundamental rethinking of the testing process by both practitioners, who can use these techniques immediately to improve their testing, and researchers who can help address many of the open questions raised by this new approach.
Abstract:Today's AI deployments often require significant human involvement and skill in the operational stages of the model lifecycle, including pre-release testing, monitoring, problem diagnosis and model improvements. We present a set of enabling technologies that can be used to increase the level of automation in AI operations, thus lowering the human effort required. Since a common source of human involvement is the need to assess the performance of deployed models, we focus on technologies for performance prediction and KPI analysis and show how they can be used to improve automation in the key stages of a typical AI operations pipeline.
Abstract:Adversarial training shows promise as an approach for training models that are robust towards adversarial perturbation. In this paper, we explore some of the practical challenges of adversarial training. We present a sensitivity analysis that illustrates that the effectiveness of adversarial training hinges on the settings of a few salient hyperparameters. We show that the robustness surface that emerges across these salient parameters can be surprisingly complex and that therefore no effective one-size-fits-all parameter settings exist. We then demonstrate that we can use the same salient hyperparameters as tuning knob to navigate the tension that can arise between robustness and accuracy. Based on these findings, we present a practical approach that leverages hyperparameter optimization techniques for tuning adversarial training to maximize robustness while keeping the loss in accuracy within a defined budget.