Abstract:We analyze the convergence of stochastic heavy ball (SHB) momentum in the smooth, strongly-convex setting. Kidambi et al. (2018) show that SHB (with small mini-batches) cannot attain an accelerated rate of convergence even for quadratics, and conjecture that the practical gain of SHB is a by-product of mini-batching. We substantiate this claim by showing that SHB can obtain an accelerated rate when the mini-batch size is larger than some threshold. In particular, for strongly-convex quadratics with condition number $\kappa$, we prove that SHB with the standard step-size and momentum parameters results in an $O\left(\exp(-\frac{T}{\sqrt{\kappa}}) + \sigma \right)$ convergence rate, where $T$ is the number of iterations and $\sigma^2$ is the variance in the stochastic gradients. To ensure convergence to the minimizer, we propose a multi-stage approach that results in a noise-adaptive $O\left(\exp\left(-\frac{T}{\sqrt{\kappa}} \right) + \frac{\sigma}{T}\right)$ rate. For general strongly-convex functions, we use the averaging interpretation of SHB along with exponential step-sizes to prove an $O\left(\exp\left(-\frac{T}{\kappa} \right) + \frac{\sigma^2}{T} \right)$ convergence to the minimizer in a noise-adaptive manner. Finally, we empirically demonstrate the effectiveness of the proposed algorithms.
Abstract:The Competition on Legal Information Extraction/Entailment (COLIEE) is held annually to encourage advancements in the automatic processing of legal texts. Processing legal documents is challenging due to the intricate structure and meaning of legal language. In this paper, we outline our strategies for tackling Task 2, Task 3, and Task 4 in the COLIEE 2023 competition. Our approach involved utilizing appropriate state-of-the-art deep learning methods, designing methods based on domain characteristics observation, and applying meticulous engineering practices and methodologies to the competition. As a result, our performance in these tasks has been outstanding, with first places in Task 2 and Task 3, and promising results in Task 4. Our source code is available at https://github.com/Nguyen2015/CAPTAIN-COLIEE2023/tree/coliee2023.
Abstract:The advancements in Artificial Intelligence (AI) technologies such as ChatGPT have gained popularity in recent days. The integration of ChatGPT in educational contexts has already created attractions due to a wide range of applications. However, the automatic generation of human-like texts also poses potential risks to academic integrity, especially when faced with writing-intensive language courses. Considering the ongoing debates, this study aims to investigate the academic policies and guidelines established by US universities regarding the use of ChatGPT in teaching and learning. The data sources include academic policies, statements, guidelines as well as relevant resources that were provided by the top 50 universities in the United States, according to U.S. News. Thematic analysis and qualitative analysis were employed in the analysis and showed that most top 50 universities were open but cautious towards the integration of generative AI in teaching and learning and also expressed their concerns on ethical usage, accuracy, and data privacy. Most universities also provided a variety of resources and guidelines, including syllabus templates/samples, workshops and discussions, shared articles, and one-on-one consultations, with focuses on general technical introduction, ethical concerns, pedagogical applications, preventive strategies, data privacy, limitations, and detective tools. The findings will inform future policy-making regarding the integration of ChatGPT in college-level education and influence the provision of supportive resources by universities for the appropriate application of ChatGPT in education.