Abstract:In the timeline-based approach to planning, the evolution over time of a set of state variables (the timelines) is governed by a set of temporal constraints. Traditional timeline-based planning systems excel at the integration of planning with execution by handling temporal uncertainty. In order to handle general nondeterminism as well, the concept of timeline-based games has been recently introduced. It has been proved that finding whether a winning strategy exists for such games is 2EXPTIME-complete. However, a concrete approach to synthesize controllers implementing such strategies is missing. This paper fills this gap, by providing an effective and computationally optimal approach to controller synthesis for timeline-based games.
Abstract:Obstructive Sleep Apnea Syndrome (OSAS) is the most common sleep-related breathing disorder. It is caused by an increased upper airway resistance during sleep, which determines episodes of partial or complete interruption of airflow. The detection and treatment of OSAS is particularly important in stroke patients, because the presence of severe OSAS is associated with higher mortality, worse neurological deficits, worse functional outcome after rehabilitation, and a higher likelihood of uncontrolled hypertension. The gold standard test for diagnosing OSAS is polysomnography (PSG). Unfortunately, performing a PSG in an electrically hostile environment, like a stroke unit, on neurologically impaired patients is a difficult task; also, the number of strokes per day outnumbers the availability of polysomnographs and dedicated healthcare professionals. Thus, a simple and automated recognition system to identify OSAS among acute stroke patients, relying on routinely recorded vital signs, is desirable. The majority of the work done so far focuses on data recorded in ideal conditions and highly selected patients, and thus it is hardly exploitable in real-life settings, where it would be of actual use. In this paper, we propose a convolutional deep learning architecture able to reduce the temporal resolution of raw waveform data, like physiological signals, extracting key features that can be used for further processing. We exploit models based on such an architecture to detect OSAS events in stroke unit recordings obtained from the monitoring of unselected patients. Unlike existing approaches, annotations are performed at one-second granularity, allowing physicians to better interpret the model outcome. Results are considered to be satisfactory by the domain experts. Moreover, based on a widely-used benchmark, we show that the proposed approach outperforms current state-of-the-art solutions.
Abstract:Linear Temporal Logic (LTL) is one of the most popular temporal logics, that comes into play in a variety of branches of computer science. Among the various reasons of its widespread use there are its strong foundational properties: LTL is equivalent to counter-free omega-automata, to star-free omega-regular expressions, and (by Kamp's theorem) to the first-order theory of one successor (S1S[FO]). Safety and co-safety languages, where a finite prefix suffices to establish whether a word does not belong or belongs to the language, respectively, play a crucial role in lowering the complexity of problems like model checking and reactive synthesis for LTL. SafetyLTL (resp., coSafetyLTL) is a fragment of LTL where only universal (resp., existential) temporal modalities are allowed, that recognises safety (resp., co-safety) languages only. The main contribution of this paper is the introduction of a fragment of S1S[FO], called SafetyFO, and of its dual coSafetyFO, which are expressively complete with respect to the LTL-definable safety and co-safety languages. We prove that they exactly characterize SafetyLTL and coSafetyLTL, respectively, a result that joins Kamp's theorem, and provides a clearer view of the characterization of (fragments of) LTL in terms of first-order languages. In addition, it gives a direct, compact, and self-contained proof that any safety language definable in LTL is definable in SafetyLTL as well. As a by-product, we obtain some interesting results on the expressive power of the weak tomorrow operator of SafetyLTL, interpreted over finite and infinite words. Moreover, we prove that, when interpreted over finite words, SafetyLTL (resp. coSafetyLTL) devoid of the tomorrow (resp., weak tomorrow) operator captures the safety (resp., co-safety) fragment of LTL over finite words.
Abstract:The ever more accurate search for deep analysis in customer data is a really strong technological trend nowadays, quite appealing to both private and public companies. This is particularly true in the contact center domain, where speech analytics is an extremely powerful methodology for gaining insights from unstructured data, coming from customer and human agent conversations. In this work, we describe an experimentation with a speech analytics process for an Italian contact center, that deals with call recordings extracted from inbound or outbound flows. First, we illustrate in detail the development of an in-house speech-to-text solution, based on Kaldi framework, and evaluate its performance (and compare it to Google Cloud Speech API). Then, we evaluate and compare different approaches to the semantic tagging of call transcripts, ranging from classic regular expressions to machine learning models based on ngrams and logistic regression, and propose a combination of them, which is shown to provide a consistent benefit. Finally, a decision tree inducer, called J48S, is applied to the problem of tagging. Such an algorithm is natively capable of exploiting sequential data, such as texts, for classification purposes. The solution is compared with the other approaches and is shown to provide competitive classification performances, while generating highly interpretable models and reducing the complexity of the data preparation phase. The potential operational impact of the whole process is thoroughly examined.
Abstract:In timeline-based planning, domains are described as sets of independent, but interacting, components, whose behaviour over time (the set of timelines) is governed by a set of temporal constraints. A distinguishing feature of timeline-based planning systems is the ability to integrate planning with execution by synthesising control strategies for flexible plans. However, flexible plans can only represent temporal uncertainty, while more complex forms of nondeterminism are needed to deal with a wider range of realistic problems. In this paper, we propose a novel game-theoretic approach to timeline-based planning problems, generalising the state of the art while uniformly handling temporal uncertainty and nondeterminism. We define a general concept of timeline-based game and we show that the notion of winning strategy for these games is strictly more general than that of control strategy for dynamically controllable flexible plans. Moreover, we show that the problem of establishing the existence of such winning strategies is decidable using a doubly exponential amount of space.