Abstract:Obstructive Sleep Apnea Syndrome (OSAS) is the most common sleep-related breathing disorder. It is caused by an increased upper airway resistance during sleep, which determines episodes of partial or complete interruption of airflow. The detection and treatment of OSAS is particularly important in stroke patients, because the presence of severe OSAS is associated with higher mortality, worse neurological deficits, worse functional outcome after rehabilitation, and a higher likelihood of uncontrolled hypertension. The gold standard test for diagnosing OSAS is polysomnography (PSG). Unfortunately, performing a PSG in an electrically hostile environment, like a stroke unit, on neurologically impaired patients is a difficult task; also, the number of strokes per day outnumbers the availability of polysomnographs and dedicated healthcare professionals. Thus, a simple and automated recognition system to identify OSAS among acute stroke patients, relying on routinely recorded vital signs, is desirable. The majority of the work done so far focuses on data recorded in ideal conditions and highly selected patients, and thus it is hardly exploitable in real-life settings, where it would be of actual use. In this paper, we propose a convolutional deep learning architecture able to reduce the temporal resolution of raw waveform data, like physiological signals, extracting key features that can be used for further processing. We exploit models based on such an architecture to detect OSAS events in stroke unit recordings obtained from the monitoring of unselected patients. Unlike existing approaches, annotations are performed at one-second granularity, allowing physicians to better interpret the model outcome. Results are considered to be satisfactory by the domain experts. Moreover, based on a widely-used benchmark, we show that the proposed approach outperforms current state-of-the-art solutions.
Abstract:The ever more accurate search for deep analysis in customer data is a really strong technological trend nowadays, quite appealing to both private and public companies. This is particularly true in the contact center domain, where speech analytics is an extremely powerful methodology for gaining insights from unstructured data, coming from customer and human agent conversations. In this work, we describe an experimentation with a speech analytics process for an Italian contact center, that deals with call recordings extracted from inbound or outbound flows. First, we illustrate in detail the development of an in-house speech-to-text solution, based on Kaldi framework, and evaluate its performance (and compare it to Google Cloud Speech API). Then, we evaluate and compare different approaches to the semantic tagging of call transcripts, ranging from classic regular expressions to machine learning models based on ngrams and logistic regression, and propose a combination of them, which is shown to provide a consistent benefit. Finally, a decision tree inducer, called J48S, is applied to the problem of tagging. Such an algorithm is natively capable of exploiting sequential data, such as texts, for classification purposes. The solution is compared with the other approaches and is shown to provide competitive classification performances, while generating highly interpretable models and reducing the complexity of the data preparation phase. The potential operational impact of the whole process is thoroughly examined.