Dept. of Mathematics and Computer Science, University of Ferrara, Italy
Abstract:Multivariate temporal, or time, series classification is, in a way, the temporal generalization of (numeric) classification, as every instance is described by multiple time series instead of multiple values. Symbolic classification is the machine learning strategy to extract explicit knowledge from a data set, and the problem of symbolic classification of multivariate temporal series requires the design, implementation, and test of ad-hoc machine learning algorithms, such as, for example, algorithms for the extraction of temporal versions of decision trees. One of the most well-known algorithms for decision tree extraction from categorical data is Quinlan's ID3, which was later extended to deal with numerical attributes, resulting in an algorithm known as C4.5, and implemented in many open-sources data mining libraries, including the so-called Weka, which features an implementation of C4.5 called J48. ID3 was recently generalized to deal with temporal data in form of timelines, which can be seen as discrete (categorical) versions of multivariate time series, and such a generalization, based on the interval temporal logic HS, is known as Temporal ID3. In this paper we introduce Temporal C4.5, that allows the extraction of temporal decision trees from undiscretized multivariate time series, describe its implementation, called Temporal J48, and discuss the outcome of a set of experiments with the latter on a collection of public data sets, comparing the results with those obtained by other, classical, multivariate time series classification methods.
Abstract:The ever more accurate search for deep analysis in customer data is a really strong technological trend nowadays, quite appealing to both private and public companies. This is particularly true in the contact center domain, where speech analytics is an extremely powerful methodology for gaining insights from unstructured data, coming from customer and human agent conversations. In this work, we describe an experimentation with a speech analytics process for an Italian contact center, that deals with call recordings extracted from inbound or outbound flows. First, we illustrate in detail the development of an in-house speech-to-text solution, based on Kaldi framework, and evaluate its performance (and compare it to Google Cloud Speech API). Then, we evaluate and compare different approaches to the semantic tagging of call transcripts, ranging from classic regular expressions to machine learning models based on ngrams and logistic regression, and propose a combination of them, which is shown to provide a consistent benefit. Finally, a decision tree inducer, called J48S, is applied to the problem of tagging. Such an algorithm is natively capable of exploiting sequential data, such as texts, for classification purposes. The solution is compared with the other approaches and is shown to provide competitive classification performances, while generating highly interpretable models and reducing the complexity of the data preparation phase. The potential operational impact of the whole process is thoroughly examined.
Abstract:Symbolic learning represents the most straightforward approach to interpretable modeling, but its applications have been hampered by a single structural design choice: the adoption of propositional logic as the underlying language. Recently, more-than-propositional symbolic learning methods have started to appear, in particular for time-dependent data. These methods exploit the expressive power of modal temporal logics in powerful learning algorithms, such as temporal decision trees, whose classification capabilities are comparable with the best non-symbolic ones, while producing models with explicit knowledge representation. With the intent of following the same approach in the case of spatial data, in this paper we: i) present a theory of spatial decision tree learning; ii) describe a prototypical implementation of a spatial decision tree learning algorithm based, and strictly extending, the classical C4.5 algorithm; and iii) perform a series of experiments in which we compare the predicting power of spatial decision trees with that of classical propositional decision trees in several versions, for a multi-class image classification problem, on publicly available datasets. Our results are encouraging, showing clear improvements in the performances from the propositional to the spatial models, which in turn show higher levels of interpretability.
Abstract:Interval temporal logics (ITLs) are logics for reasoning about temporal statements expressed over intervals, i.e., periods of time. The most famous ITL studied so far is Halpern and Shoham's HS, which is the logic of the thirteen Allen's interval relations. Unfortunately, HS and most of its fragments have an undecidable satisfiability problem. This discouraged the research in this area until recently, when a number non-trivial decidable ITLs have been discovered. This paper is a contribution towards the complete classification of all different fragments of HS. We consider different combinations of the interval relations Begins, After, Later and their inverses Abar, Bbar, and Lbar. We know from previous works that the combination ABBbarAbar is decidable only when finite domains are considered (and undecidable elsewhere), and that ABBbar is decidable over the natural numbers. We extend these results by showing that decidability of ABBar can be further extended to capture the language ABBbarLbar, which lays in between ABBar and ABBbarAbar, and that turns out to be maximal w.r.t decidability over strongly discrete linear orders (e.g. finite orders, the naturals, the integers). We also prove that the proposed decision procedure is optimal with respect to the complexity class.